Spaces:
Runtime error
Runtime error
File size: 4,428 Bytes
6c226f9 f6a264d 6c226f9 f6a264d d790c0b f6a264d 6c226f9 7097513 9d6fa91 66efbc3 d790c0b 6c226f9 f6a264d 6c226f9 7097513 6c226f9 f6a264d 6c226f9 f6a264d 6c226f9 f6a264d 6c226f9 f6a264d 6c226f9 f6a264d 6c226f9 f6a264d 6c226f9 f6a264d d790c0b f6a264d d790c0b f6a264d d790c0b f6a264d 6c226f9 f6a264d 66efbc3 d790c0b f6a264d d790c0b 6c226f9 f6a264d 0a7fcda d790c0b 6c226f9 609dcbe 6c226f9 b95b5ca 6c226f9 b95b5ca 6c226f9 7097513 609dcbe 7097513 6c226f9 b95b5ca 6c226f9 b95b5ca 6c226f9 f6a264d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import torch
import gradio as gr
import yt_dlp as yt
from transformers import pipeline
#from transformers.pipelines.audio_utils import ffmpeg_read
from typing import Tuple
import tempfile
import os
from yt_dlp import YoutubeDL
MODEL_NAME = "openai/whisper-large-v2"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
chunk_length_s=30,
model=MODEL_NAME,
device=device,
)
def transcribe(microphone, file_upload, task):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
raise gr.InterfaceError("You have to either use the microphone or upload an audio file")
file_size_mb = None
if file_upload is not None:
file_size_mb = os.stat(file_upload).st_size / (1024 * 1024)
if file_size_mb > FILE_LIMIT_MB:
raise gr.InterfaceError(
f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB."
)
file_path = microphone if microphone is not None else file_upload
with open(file_path, "rb") as f:
inputs = f.read()
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
return warn_output + text
def download_yt_audio(yt_url, filename):
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with yt.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except yt.utils.ExtractorError as err:
raise gr.InterfaceError(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0) -> Tuple[str, str]:
with YoutubeDL({}) as ydl:
info_dict = ydl.extract_info(yt_url, download=False)
video_id = info_dict["id"]
html_embed_str = f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
#inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
#inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task})["text"]
return html_embed_str, text
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Large V2: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True) |