File size: 5,865 Bytes
07e6c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import cv2
import mediapipe as mp
import numpy as np

correct = cv2.imread('right.png')
correct = cv2.cvtColor(correct, cv2.COLOR_BGR2RGB)
incorrect = cv2.imread('wrong.png')
incorrect = cv2.cvtColor(incorrect, cv2.COLOR_BGR2RGB)

def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):

    x1, y1 = rect_start
    x2, y2 = rect_end
    w = corner_width

    # draw filled rectangles
    cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
    cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
    cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
    cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
    cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)


    # draw filled ellipses
    cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
                angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)

    cv2.ellipse(img, (x2 - w, y1 + w), (w, w),
                angle = 0, startAngle = 0, endAngle = -90, color = box_color, thickness = -1)

    cv2.ellipse(img, (x1 + w, y2 - w), (w, w),
                angle = 0, startAngle = 90, endAngle = 180, color = box_color, thickness = -1)

    cv2.ellipse(img, (x2 - w, y2 - w), (w, w),
                angle = 0, startAngle = 0, endAngle = 90, color = box_color, thickness = -1)

    return img




def draw_dotted_line(frame, lm_coord, start, end, line_color):
    pix_step = 0

    for i in range(start, end+1, 8):
        cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)

    return frame

def draw_text(
    img,
    msg,
    width = 7,
    font=cv2.FONT_HERSHEY_SIMPLEX,
    pos=(0, 0),
    font_scale=1,
    font_thickness=2,
    text_color=(0, 255, 0),
    text_color_bg=(0, 0, 0),
    box_offset=(20, 10),
    overlay_image = False,
    overlay_type = None
):

    offset = box_offset
    x, y = pos
    text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
    text_w, text_h = text_size

    rec_start = tuple(p - o for p, o in zip(pos, offset))
    rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))

    resize_height = 0

    if overlay_image:
        resize_height = rec_end[1] - rec_start[1]
        # print("Height: ", resize_height)
        # print("Width: ", rec_end[0] - rec_start[0])
        img = draw_rounded_rect(img, rec_start, (rec_end[0]+resize_height, rec_end[1]), width, text_color_bg)
        if overlay_type == "correct":
            overlay_res = cv2.resize(correct, (resize_height, resize_height), interpolation = cv2.INTER_AREA)		
        elif overlay_type == "incorrect":
            overlay_res = cv2.resize(incorrect, (resize_height, resize_height), interpolation = cv2.INTER_AREA)

        img[rec_start[1]:rec_start[1]+resize_height, rec_start[0]+width:rec_start[0]+width+resize_height] = overlay_res

    else:
        img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)


    cv2.putText(
        img,
        msg,
        (int(rec_start[0]+resize_height + 8), int(y + text_h + font_scale - 1)), 
        font,
        font_scale,
        text_color,
        font_thickness,
        cv2.LINE_AA,
    )

    
    
    return text_size



def find_angle(p1, p2, ref_pt = np.array([0,0])):
    p1_ref = p1 - ref_pt
    p2_ref = p2 - ref_pt

    cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
    theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
            
    degree = int(180 / np.pi) * theta

    return int(degree)





def get_landmark_array(pose_landmark, key, frame_width, frame_height):

    denorm_x = int(pose_landmark[key].x * frame_width)
    denorm_y = int(pose_landmark[key].y * frame_height)

    return np.array([denorm_x, denorm_y])




def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):

    if feature == 'nose':
        return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)

    elif feature == 'left' or 'right':
        shldr_coord = get_landmark_array(kp_results, dict_features[feature]['shoulder'], frame_width, frame_height)
        elbow_coord   = get_landmark_array(kp_results, dict_features[feature]['elbow'], frame_width, frame_height)
        wrist_coord   = get_landmark_array(kp_results, dict_features[feature]['wrist'], frame_width, frame_height)
        hip_coord   = get_landmark_array(kp_results, dict_features[feature]['hip'], frame_width, frame_height)
        knee_coord   = get_landmark_array(kp_results, dict_features[feature]['knee'], frame_width, frame_height)
        ankle_coord   = get_landmark_array(kp_results, dict_features[feature]['ankle'], frame_width, frame_height)
        foot_coord   = get_landmark_array(kp_results, dict_features[feature]['foot'], frame_width, frame_height)

        return shldr_coord, elbow_coord, wrist_coord, hip_coord, knee_coord, ankle_coord, foot_coord
    
    else:
       raise ValueError("feature needs to be either 'nose', 'left' or 'right")


def get_mediapipe_pose(
                        static_image_mode = False, 
                        model_complexity = 1,
                        smooth_landmarks = True,
                        min_detection_confidence = 0.5,
                        min_tracking_confidence = 0.5

                      ):
    pose = mp.solutions.pose.Pose(
                                    static_image_mode = static_image_mode,
                                    model_complexity = model_complexity,
                                    smooth_landmarks = smooth_landmarks,
                                    min_detection_confidence = min_detection_confidence,
                                    min_tracking_confidence = min_tracking_confidence
                                 )
    return pose