sancho10 commited on
Commit
08a8718
β€’
1 Parent(s): 16f0c7d

Upload Unj.ipynb

Browse files
Files changed (1) hide show
  1. Unj.ipynb +462 -0
Unj.ipynb ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": []
7
+ },
8
+ "kernelspec": {
9
+ "name": "python3",
10
+ "display_name": "Python 3"
11
+ },
12
+ "language_info": {
13
+ "name": "python"
14
+ }
15
+ },
16
+ "cells": [
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "metadata": {
21
+ "colab": {
22
+ "base_uri": "https://localhost:8080/"
23
+ },
24
+ "id": "YIAgpK3L7Ztm",
25
+ "outputId": "56f931a2-7e43-4cb1-c755-874bb28c8573"
26
+ },
27
+ "outputs": [
28
+ {
29
+ "output_type": "stream",
30
+ "name": "stdout",
31
+ "text": [
32
+ "Mounted at /content/drive\n"
33
+ ]
34
+ }
35
+ ],
36
+ "source": [
37
+ "from google.colab import drive\n",
38
+ "drive.mount('/content/drive')\n"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "source": [
44
+ "# Install necessary packages\n",
45
+ "!pip install mediapipe tensorflow scikit-learn opencv-python-headless\n",
46
+ "\n",
47
+ "# Import libraries\n",
48
+ "import os\n",
49
+ "import cv2\n",
50
+ "import numpy as np\n",
51
+ "import mediapipe as mp\n",
52
+ "import tensorflow as tf\n",
53
+ "from sklearn.model_selection import train_test_split\n",
54
+ "from tensorflow.keras import Sequential\n",
55
+ "from tensorflow.keras.layers import LSTM, Dense\n"
56
+ ],
57
+ "metadata": {
58
+ "colab": {
59
+ "base_uri": "https://localhost:8080/"
60
+ },
61
+ "id": "jInzzU1b-ZIC",
62
+ "outputId": "163cec47-3d6d-435a-9819-fc7755e3ecc0"
63
+ },
64
+ "execution_count": null,
65
+ "outputs": [
66
+ {
67
+ "output_type": "stream",
68
+ "name": "stdout",
69
+ "text": [
70
+ "Requirement already satisfied: mediapipe in /usr/local/lib/python3.10/dist-packages (0.10.15)\n",
71
+ "Requirement already satisfied: tensorflow in /usr/local/lib/python3.10/dist-packages (2.17.0)\n",
72
+ "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.3.2)\n",
73
+ "Requirement already satisfied: opencv-python-headless in /usr/local/lib/python3.10/dist-packages (4.10.0.84)\n",
74
+ "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.4.0)\n",
75
+ "Requirement already satisfied: attrs>=19.1.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.2.0)\n",
76
+ "Requirement already satisfied: flatbuffers>=2.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.3.25)\n",
77
+ "Requirement already satisfied: jax in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26)\n",
78
+ "Requirement already satisfied: jaxlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26+cuda12.cudnn89)\n",
79
+ "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (3.7.1)\n",
80
+ "Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.26.4)\n",
81
+ "Requirement already satisfied: opencv-contrib-python in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.10.0.84)\n",
82
+ "Requirement already satisfied: protobuf<5,>=4.25.3 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.25.4)\n",
83
+ "Requirement already satisfied: sounddevice>=0.4.4 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.5.0)\n",
84
+ "Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.6.3)\n",
85
+ "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.6.0)\n",
86
+ "Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.2.0)\n",
87
+ "Requirement already satisfied: h5py>=3.10.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.11.0)\n",
88
+ "Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (18.1.1)\n",
89
+ "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.4.0)\n",
90
+ "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.3.0)\n",
91
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow) (24.1)\n",
92
+ "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.32.3)\n",
93
+ "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow) (71.0.4)\n",
94
+ "Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
95
+ "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.4.0)\n",
96
+ "Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (4.12.2)\n",
97
+ "Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
98
+ "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.64.1)\n",
99
+ "Requirement already satisfied: tensorboard<2.18,>=2.17 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.17.0)\n",
100
+ "Requirement already satisfied: keras>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.4.1)\n",
101
+ "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.37.1)\n",
102
+ "Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.13.1)\n",
103
+ "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n",
104
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n",
105
+ "Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow) (0.44.0)\n",
106
+ "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (13.8.0)\n",
107
+ "Requirement already satisfied: namex in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.0.8)\n",
108
+ "Requirement already satisfied: optree in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.12.1)\n",
109
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
110
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.8)\n",
111
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.0.7)\n",
112
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2024.7.4)\n",
113
+ "Requirement already satisfied: CFFI>=1.0 in /usr/local/lib/python3.10/dist-packages (from sounddevice>=0.4.4->mediapipe) (1.17.0)\n",
114
+ "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.7)\n",
115
+ "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (0.7.2)\n",
116
+ "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.0.4)\n",
117
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.3.0)\n",
118
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (0.12.1)\n",
119
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (4.53.1)\n",
120
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.4.5)\n",
121
+ "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (9.4.0)\n",
122
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (3.1.4)\n",
123
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (2.8.2)\n",
124
+ "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from CFFI>=1.0->sounddevice>=0.4.4->mediapipe) (2.22)\n",
125
+ "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow) (2.1.5)\n",
126
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (3.0.0)\n",
127
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (2.16.1)\n",
128
+ "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow) (0.1.2)\n"
129
+ ]
130
+ }
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "source": [
136
+ "# Import libraries\n",
137
+ "import os\n",
138
+ "import cv2\n",
139
+ "import numpy as np\n",
140
+ "import mediapipe as mp\n",
141
+ "import tensorflow as tf\n",
142
+ "from sklearn.model_selection import train_test_split\n",
143
+ "from tensorflow.keras import Sequential\n",
144
+ "from tensorflow.keras.layers import LSTM, Dense\n",
145
+ "\n",
146
+ "# Initialize MediaPipe\n",
147
+ "mp_pose = mp.solutions.pose\n",
148
+ "mp_drawing = mp.solutions.drawing_utils\n",
149
+ "\n",
150
+ "def extract_keypoints(video_path):\n",
151
+ " cap = cv2.VideoCapture(video_path)\n",
152
+ " pose = mp_pose.Pose()\n",
153
+ " keypoints = []\n",
154
+ "\n",
155
+ " while cap.isOpened():\n",
156
+ " ret, frame = cap.read()\n",
157
+ " if not ret:\n",
158
+ " break\n",
159
+ "\n",
160
+ " frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
161
+ " results = pose.process(frame_rgb)\n",
162
+ "\n",
163
+ " if results.pose_landmarks:\n",
164
+ " landmarks = []\n",
165
+ " for lm in results.pose_landmarks.landmark:\n",
166
+ " landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
167
+ " keypoints.append(landmarks)\n",
168
+ " else:\n",
169
+ " keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
170
+ "\n",
171
+ " cap.release()\n",
172
+ " return np.array(keypoints)\n"
173
+ ],
174
+ "metadata": {
175
+ "id": "3eMlBHrR-jEC"
176
+ },
177
+ "execution_count": null,
178
+ "outputs": []
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "source": [
183
+ "def process_videos_in_batches(parent_dir, batch_size=10):\n",
184
+ " X = []\n",
185
+ " y = []\n",
186
+ "\n",
187
+ " exercise_folders = [f for f in os.listdir(parent_dir) if os.path.isdir(os.path.join(parent_dir, f))]\n",
188
+ "\n",
189
+ " for exercise_folder in exercise_folders:\n",
190
+ " exercise_path = os.path.join(parent_dir, exercise_folder)\n",
191
+ " video_files = [f for f in os.listdir(exercise_path) if f.endswith('.mp4')]\n",
192
+ "\n",
193
+ " for i, video_file in enumerate(video_files):\n",
194
+ " video_path = os.path.join(exercise_path, video_file)\n",
195
+ " keypoints = extract_keypoints(video_path)\n",
196
+ " # Pad keypoints to ensure consistent length across videos\n",
197
+ " max_length = 100 # Replace with the expected maximum number of frames\n",
198
+ " if keypoints.shape[0] < max_length:\n",
199
+ " padding = np.zeros((max_length - keypoints.shape[0], keypoints.shape[1]))\n",
200
+ " keypoints = np.concatenate((keypoints, padding), axis=0)\n",
201
+ " elif keypoints.shape[0] > max_length: # Trim video if it is longer than max length\n",
202
+ " keypoints = keypoints[:max_length, :]\n",
203
+ " X.append(keypoints)\n",
204
+ " y.append(1) # Assuming all videos are labeled as correct exercise\n",
205
+ "\n",
206
+ " # If batch size is reached or last video in folder, save batch\n",
207
+ " if (i + 1) % batch_size == 0 or (i + 1) == len(video_files):\n",
208
+ " batch_index = i // batch_size\n",
209
+ " np.save(f'/content/drive/MyDrive/keypoints_batch_{exercise_folder}_{batch_index}.npy', np.array(X))\n",
210
+ " np.save(f'/content/drive/MyDrive/labels_batch_{exercise_folder}_{batch_index}.npy', np.array(y))\n",
211
+ " X = [] # Reset lists\n",
212
+ " y = []\n",
213
+ "\n",
214
+ " return True\n",
215
+ "\n",
216
+ "# Define the parent directory containing all exercise folders\n",
217
+ "parent_dir = '/content/drive/MyDrive/correct/correct'\n",
218
+ "process_videos_in_batches(parent_dir, batch_size=10)"
219
+ ],
220
+ "metadata": {
221
+ "colab": {
222
+ "base_uri": "https://localhost:8080/"
223
+ },
224
+ "id": "4MUyUyh2-ruX",
225
+ "outputId": "9a1bad49-d50d-44b3-e9e6-d1e311cee30e"
226
+ },
227
+ "execution_count": null,
228
+ "outputs": [
229
+ {
230
+ "metadata": {
231
+ "tags": null
232
+ },
233
+ "name": "stderr",
234
+ "output_type": "stream",
235
+ "text": [
236
+ "/usr/local/lib/python3.10/dist-packages/google/protobuf/symbol_database.py:55: UserWarning: SymbolDatabase.GetPrototype() is deprecated. Please use message_factory.GetMessageClass() instead. SymbolDatabase.GetPrototype() will be removed soon.\n",
237
+ " warnings.warn('SymbolDatabase.GetPrototype() is deprecated. Please '\n"
238
+ ]
239
+ }
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "source": [
245
+ "import numpy as np\n",
246
+ "import os\n",
247
+ "\n",
248
+ "# Define the directory where your batches are stored\n",
249
+ "batch_dir = '/content/drive/MyDrive/'\n",
250
+ "\n",
251
+ "# Initialize empty lists to store data and labels\n",
252
+ "X = []\n",
253
+ "y = []\n",
254
+ "\n",
255
+ "# Loop through saved batch files\n",
256
+ "for file_name in os.listdir(batch_dir):\n",
257
+ " if file_name.endswith('.npy'):\n",
258
+ " if 'keypoints_batch' in file_name:\n",
259
+ " X.append(np.load(os.path.join(batch_dir, file_name)))\n",
260
+ " elif 'labels_batch' in file_name:\n",
261
+ " y.append(np.load(os.path.join(batch_dir, file_name)))\n",
262
+ "\n",
263
+ "# Combine all batches into a single dataset\n",
264
+ "X = np.concatenate(X, axis=0)\n",
265
+ "y = np.concatenate(y, axis=0)\n",
266
+ "\n",
267
+ "print(f'Loaded {X.shape[0]} samples for training.')\n"
268
+ ],
269
+ "metadata": {
270
+ "id": "h79UADwu-9bn",
271
+ "colab": {
272
+ "base_uri": "https://localhost:8080/"
273
+ },
274
+ "outputId": "4cbeaae3-f6e4-4467-86d8-a7d098ca78dd"
275
+ },
276
+ "execution_count": null,
277
+ "outputs": [
278
+ {
279
+ "output_type": "stream",
280
+ "name": "stdout",
281
+ "text": [
282
+ "Loaded 102 samples for training.\n"
283
+ ]
284
+ }
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "source": [
290
+ "from sklearn.model_selection import train_test_split\n",
291
+ "from tensorflow.keras.models import Sequential\n",
292
+ "from tensorflow.keras.layers import LSTM, Dense\n",
293
+ "\n",
294
+ "# Split data into training and testing sets\n",
295
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
296
+ "\n",
297
+ "# Define the LSTM model\n",
298
+ "model = Sequential([\n",
299
+ " LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])),\n",
300
+ " LSTM(64),\n",
301
+ " Dense(32, activation='relu'),\n",
302
+ " Dense(1, activation='sigmoid')\n",
303
+ "])\n",
304
+ "\n",
305
+ "# Compile the model\n",
306
+ "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
307
+ "\n",
308
+ "# Train the model\n",
309
+ "history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))\n",
310
+ "\n",
311
+ "# Save the trained model\n",
312
+ "model.save('lstm_model.h5')\n"
313
+ ],
314
+ "metadata": {
315
+ "id": "jyr0HzDTBFWQ",
316
+ "colab": {
317
+ "base_uri": "https://localhost:8080/"
318
+ },
319
+ "outputId": "ece2fc87-75aa-4b9a-e40b-f1bbb4d6a7c7"
320
+ },
321
+ "execution_count": null,
322
+ "outputs": [
323
+ {
324
+ "output_type": "stream",
325
+ "name": "stderr",
326
+ "text": [
327
+ "/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
328
+ " super().__init__(**kwargs)\n"
329
+ ]
330
+ },
331
+ {
332
+ "output_type": "stream",
333
+ "name": "stdout",
334
+ "text": [
335
+ "Epoch 1/20\n",
336
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 307ms/step - accuracy: 0.6601 - loss: 0.6587 - val_accuracy: 1.0000 - val_loss: 0.5224\n",
337
+ "Epoch 2/20\n",
338
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 110ms/step - accuracy: 1.0000 - loss: 0.4933 - val_accuracy: 1.0000 - val_loss: 0.3953\n",
339
+ "Epoch 3/20\n",
340
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 0.3809 - val_accuracy: 1.0000 - val_loss: 0.2403\n",
341
+ "Epoch 4/20\n",
342
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 0.2357 - val_accuracy: 1.0000 - val_loss: 0.0733\n",
343
+ "Epoch 5/20\n",
344
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 0.0661 - val_accuracy: 1.0000 - val_loss: 0.0144\n",
345
+ "Epoch 6/20\n",
346
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 0.0128 - val_accuracy: 1.0000 - val_loss: 0.0052\n",
347
+ "Epoch 7/20\n",
348
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0047 - val_accuracy: 1.0000 - val_loss: 0.0024\n",
349
+ "Epoch 8/20\n",
350
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - accuracy: 1.0000 - loss: 0.0022 - val_accuracy: 1.0000 - val_loss: 0.0013\n",
351
+ "Epoch 9/20\n",
352
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 1.0000 - val_loss: 7.7855e-04\n",
353
+ "Epoch 10/20\n",
354
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 101ms/step - accuracy: 1.0000 - loss: 7.1853e-04 - val_accuracy: 1.0000 - val_loss: 5.1570e-04\n",
355
+ "Epoch 11/20\n",
356
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 4.8286e-04 - val_accuracy: 1.0000 - val_loss: 3.7081e-04\n",
357
+ "Epoch 12/20\n",
358
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - accuracy: 1.0000 - loss: 3.5438e-04 - val_accuracy: 1.0000 - val_loss: 2.8507e-04\n",
359
+ "Epoch 13/20\n",
360
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 2.7463e-04 - val_accuracy: 1.0000 - val_loss: 2.3120e-04\n",
361
+ "Epoch 14/20\n",
362
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 2.2495e-04 - val_accuracy: 1.0000 - val_loss: 1.9555e-04\n",
363
+ "Epoch 15/20\n",
364
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - accuracy: 1.0000 - loss: 1.9260e-04 - val_accuracy: 1.0000 - val_loss: 1.7094e-04\n",
365
+ "Epoch 16/20\n",
366
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 1.6921e-04 - val_accuracy: 1.0000 - val_loss: 1.5331e-04\n",
367
+ "Epoch 17/20\n",
368
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 1.5150e-04 - val_accuracy: 1.0000 - val_loss: 1.4028e-04\n",
369
+ "Epoch 18/20\n",
370
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 134ms/step - accuracy: 1.0000 - loss: 1.3873e-04 - val_accuracy: 1.0000 - val_loss: 1.3034e-04\n",
371
+ "Epoch 19/20\n",
372
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 163ms/step - accuracy: 1.0000 - loss: 1.2947e-04 - val_accuracy: 1.0000 - val_loss: 1.2256e-04\n",
373
+ "Epoch 20/20\n",
374
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 186ms/step - accuracy: 1.0000 - loss: 1.2323e-04 - val_accuracy: 1.0000 - val_loss: 1.1630e-04\n"
375
+ ]
376
+ },
377
+ {
378
+ "output_type": "stream",
379
+ "name": "stderr",
380
+ "text": [
381
+ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
382
+ ]
383
+ }
384
+ ]
385
+ },
386
+ {
387
+ "cell_type": "code",
388
+ "source": [
389
+ "# Import libraries\n",
390
+ "import os\n",
391
+ "import cv2\n",
392
+ "import numpy as np\n",
393
+ "import mediapipe as mp\n",
394
+ "import tensorflow as tf\n",
395
+ "from sklearn.model_selection import train_test_split\n",
396
+ "from tensorflow.keras import Sequential\n",
397
+ "from tensorflow.keras.layers import LSTM, Dense\n",
398
+ "\n",
399
+ "# Initialize MediaPipe\n",
400
+ "mp_pose = mp.solutions.pose\n",
401
+ "mp_drawing = mp.solutions.drawing_utils\n",
402
+ "\n",
403
+ "def extract_keypoints(video_path):\n",
404
+ " cap = cv2.VideoCapture(video_path)\n",
405
+ " pose = mp_pose.Pose()\n",
406
+ " keypoints = []\n",
407
+ "\n",
408
+ " while cap.isOpened():\n",
409
+ " ret, frame = cap.read()\n",
410
+ " if not ret:\n",
411
+ " break\n",
412
+ "\n",
413
+ " frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
414
+ " results = pose.process(frame_rgb)\n",
415
+ "\n",
416
+ " if results.pose_landmarks:\n",
417
+ " landmarks = []\n",
418
+ " for lm in results.pose_landmarks.landmark:\n",
419
+ " landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
420
+ " keypoints.append(landmarks)\n",
421
+ " else:\n",
422
+ " keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
423
+ "\n",
424
+ " cap.release()\n",
425
+ " return np.array(keypoints)\n",
426
+ "\n",
427
+ "def predict_exercise(video_path, model):\n",
428
+ " keypoints = extract_keypoints(video_path) # Now extract_keypoints is available\n",
429
+ " keypoints = np.expand_dims(keypoints, axis=0)\n",
430
+ " prediction = model.predict(keypoints)\n",
431
+ "\n",
432
+ " if prediction > 0.5:\n",
433
+ " return 'Correct Exercise'\n",
434
+ " else:\n",
435
+ " return 'Incorrect Exercise'\n",
436
+ "\n",
437
+ "# Example usage:\n",
438
+ "uploaded_video_path = '/content/drive/MyDrive/correct/correct/decline bench press/dbp_1.mp4'\n",
439
+ "result = predict_exercise(uploaded_video_path, model)\n",
440
+ "print(f'Result: {result}')"
441
+ ],
442
+ "metadata": {
443
+ "id": "8kcyfLGmBNtZ",
444
+ "colab": {
445
+ "base_uri": "https://localhost:8080/"
446
+ },
447
+ "outputId": "24c01dea-14fc-4467-ec26-d4635ff022ea"
448
+ },
449
+ "execution_count": null,
450
+ "outputs": [
451
+ {
452
+ "output_type": "stream",
453
+ "name": "stdout",
454
+ "text": [
455
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 334ms/step\n",
456
+ "Result: Correct Exercise\n"
457
+ ]
458
+ }
459
+ ]
460
+ }
461
+ ]
462
+ }