Spaces:
Sleeping
Sleeping
Upload Unj.ipynb
Browse files
Unj.ipynb
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "YIAgpK3L7Ztm",
|
25 |
+
"outputId": "56f931a2-7e43-4cb1-c755-874bb28c8573"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"Mounted at /content/drive\n"
|
33 |
+
]
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"source": [
|
37 |
+
"from google.colab import drive\n",
|
38 |
+
"drive.mount('/content/drive')\n"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"# Install necessary packages\n",
|
45 |
+
"!pip install mediapipe tensorflow scikit-learn opencv-python-headless\n",
|
46 |
+
"\n",
|
47 |
+
"# Import libraries\n",
|
48 |
+
"import os\n",
|
49 |
+
"import cv2\n",
|
50 |
+
"import numpy as np\n",
|
51 |
+
"import mediapipe as mp\n",
|
52 |
+
"import tensorflow as tf\n",
|
53 |
+
"from sklearn.model_selection import train_test_split\n",
|
54 |
+
"from tensorflow.keras import Sequential\n",
|
55 |
+
"from tensorflow.keras.layers import LSTM, Dense\n"
|
56 |
+
],
|
57 |
+
"metadata": {
|
58 |
+
"colab": {
|
59 |
+
"base_uri": "https://localhost:8080/"
|
60 |
+
},
|
61 |
+
"id": "jInzzU1b-ZIC",
|
62 |
+
"outputId": "163cec47-3d6d-435a-9819-fc7755e3ecc0"
|
63 |
+
},
|
64 |
+
"execution_count": null,
|
65 |
+
"outputs": [
|
66 |
+
{
|
67 |
+
"output_type": "stream",
|
68 |
+
"name": "stdout",
|
69 |
+
"text": [
|
70 |
+
"Requirement already satisfied: mediapipe in /usr/local/lib/python3.10/dist-packages (0.10.15)\n",
|
71 |
+
"Requirement already satisfied: tensorflow in /usr/local/lib/python3.10/dist-packages (2.17.0)\n",
|
72 |
+
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.3.2)\n",
|
73 |
+
"Requirement already satisfied: opencv-python-headless in /usr/local/lib/python3.10/dist-packages (4.10.0.84)\n",
|
74 |
+
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.4.0)\n",
|
75 |
+
"Requirement already satisfied: attrs>=19.1.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.2.0)\n",
|
76 |
+
"Requirement already satisfied: flatbuffers>=2.0 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (24.3.25)\n",
|
77 |
+
"Requirement already satisfied: jax in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26)\n",
|
78 |
+
"Requirement already satisfied: jaxlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.4.26+cuda12.cudnn89)\n",
|
79 |
+
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from mediapipe) (3.7.1)\n",
|
80 |
+
"Requirement already satisfied: numpy<2 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (1.26.4)\n",
|
81 |
+
"Requirement already satisfied: opencv-contrib-python in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.10.0.84)\n",
|
82 |
+
"Requirement already satisfied: protobuf<5,>=4.25.3 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (4.25.4)\n",
|
83 |
+
"Requirement already satisfied: sounddevice>=0.4.4 in /usr/local/lib/python3.10/dist-packages (from mediapipe) (0.5.0)\n",
|
84 |
+
"Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.6.3)\n",
|
85 |
+
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.6.0)\n",
|
86 |
+
"Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.2.0)\n",
|
87 |
+
"Requirement already satisfied: h5py>=3.10.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.11.0)\n",
|
88 |
+
"Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (18.1.1)\n",
|
89 |
+
"Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.4.0)\n",
|
90 |
+
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.3.0)\n",
|
91 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow) (24.1)\n",
|
92 |
+
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.32.3)\n",
|
93 |
+
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow) (71.0.4)\n",
|
94 |
+
"Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
|
95 |
+
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.4.0)\n",
|
96 |
+
"Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (4.12.2)\n",
|
97 |
+
"Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.16.0)\n",
|
98 |
+
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (1.64.1)\n",
|
99 |
+
"Requirement already satisfied: tensorboard<2.18,>=2.17 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (2.17.0)\n",
|
100 |
+
"Requirement already satisfied: keras>=3.2.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (3.4.1)\n",
|
101 |
+
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow) (0.37.1)\n",
|
102 |
+
"Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.13.1)\n",
|
103 |
+
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)\n",
|
104 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)\n",
|
105 |
+
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow) (0.44.0)\n",
|
106 |
+
"Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (13.8.0)\n",
|
107 |
+
"Requirement already satisfied: namex in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.0.8)\n",
|
108 |
+
"Requirement already satisfied: optree in /usr/local/lib/python3.10/dist-packages (from keras>=3.2.0->tensorflow) (0.12.1)\n",
|
109 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
|
110 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.8)\n",
|
111 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.0.7)\n",
|
112 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorflow) (2024.7.4)\n",
|
113 |
+
"Requirement already satisfied: CFFI>=1.0 in /usr/local/lib/python3.10/dist-packages (from sounddevice>=0.4.4->mediapipe) (1.17.0)\n",
|
114 |
+
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.7)\n",
|
115 |
+
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (0.7.2)\n",
|
116 |
+
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.0.4)\n",
|
117 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.3.0)\n",
|
118 |
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (0.12.1)\n",
|
119 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (4.53.1)\n",
|
120 |
+
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (1.4.5)\n",
|
121 |
+
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (9.4.0)\n",
|
122 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (3.1.4)\n",
|
123 |
+
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->mediapipe) (2.8.2)\n",
|
124 |
+
"Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from CFFI>=1.0->sounddevice>=0.4.4->mediapipe) (2.22)\n",
|
125 |
+
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow) (2.1.5)\n",
|
126 |
+
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (3.0.0)\n",
|
127 |
+
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->keras>=3.2.0->tensorflow) (2.16.1)\n",
|
128 |
+
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow) (0.1.2)\n"
|
129 |
+
]
|
130 |
+
}
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"source": [
|
136 |
+
"# Import libraries\n",
|
137 |
+
"import os\n",
|
138 |
+
"import cv2\n",
|
139 |
+
"import numpy as np\n",
|
140 |
+
"import mediapipe as mp\n",
|
141 |
+
"import tensorflow as tf\n",
|
142 |
+
"from sklearn.model_selection import train_test_split\n",
|
143 |
+
"from tensorflow.keras import Sequential\n",
|
144 |
+
"from tensorflow.keras.layers import LSTM, Dense\n",
|
145 |
+
"\n",
|
146 |
+
"# Initialize MediaPipe\n",
|
147 |
+
"mp_pose = mp.solutions.pose\n",
|
148 |
+
"mp_drawing = mp.solutions.drawing_utils\n",
|
149 |
+
"\n",
|
150 |
+
"def extract_keypoints(video_path):\n",
|
151 |
+
" cap = cv2.VideoCapture(video_path)\n",
|
152 |
+
" pose = mp_pose.Pose()\n",
|
153 |
+
" keypoints = []\n",
|
154 |
+
"\n",
|
155 |
+
" while cap.isOpened():\n",
|
156 |
+
" ret, frame = cap.read()\n",
|
157 |
+
" if not ret:\n",
|
158 |
+
" break\n",
|
159 |
+
"\n",
|
160 |
+
" frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
|
161 |
+
" results = pose.process(frame_rgb)\n",
|
162 |
+
"\n",
|
163 |
+
" if results.pose_landmarks:\n",
|
164 |
+
" landmarks = []\n",
|
165 |
+
" for lm in results.pose_landmarks.landmark:\n",
|
166 |
+
" landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
|
167 |
+
" keypoints.append(landmarks)\n",
|
168 |
+
" else:\n",
|
169 |
+
" keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
|
170 |
+
"\n",
|
171 |
+
" cap.release()\n",
|
172 |
+
" return np.array(keypoints)\n"
|
173 |
+
],
|
174 |
+
"metadata": {
|
175 |
+
"id": "3eMlBHrR-jEC"
|
176 |
+
},
|
177 |
+
"execution_count": null,
|
178 |
+
"outputs": []
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"source": [
|
183 |
+
"def process_videos_in_batches(parent_dir, batch_size=10):\n",
|
184 |
+
" X = []\n",
|
185 |
+
" y = []\n",
|
186 |
+
"\n",
|
187 |
+
" exercise_folders = [f for f in os.listdir(parent_dir) if os.path.isdir(os.path.join(parent_dir, f))]\n",
|
188 |
+
"\n",
|
189 |
+
" for exercise_folder in exercise_folders:\n",
|
190 |
+
" exercise_path = os.path.join(parent_dir, exercise_folder)\n",
|
191 |
+
" video_files = [f for f in os.listdir(exercise_path) if f.endswith('.mp4')]\n",
|
192 |
+
"\n",
|
193 |
+
" for i, video_file in enumerate(video_files):\n",
|
194 |
+
" video_path = os.path.join(exercise_path, video_file)\n",
|
195 |
+
" keypoints = extract_keypoints(video_path)\n",
|
196 |
+
" # Pad keypoints to ensure consistent length across videos\n",
|
197 |
+
" max_length = 100 # Replace with the expected maximum number of frames\n",
|
198 |
+
" if keypoints.shape[0] < max_length:\n",
|
199 |
+
" padding = np.zeros((max_length - keypoints.shape[0], keypoints.shape[1]))\n",
|
200 |
+
" keypoints = np.concatenate((keypoints, padding), axis=0)\n",
|
201 |
+
" elif keypoints.shape[0] > max_length: # Trim video if it is longer than max length\n",
|
202 |
+
" keypoints = keypoints[:max_length, :]\n",
|
203 |
+
" X.append(keypoints)\n",
|
204 |
+
" y.append(1) # Assuming all videos are labeled as correct exercise\n",
|
205 |
+
"\n",
|
206 |
+
" # If batch size is reached or last video in folder, save batch\n",
|
207 |
+
" if (i + 1) % batch_size == 0 or (i + 1) == len(video_files):\n",
|
208 |
+
" batch_index = i // batch_size\n",
|
209 |
+
" np.save(f'/content/drive/MyDrive/keypoints_batch_{exercise_folder}_{batch_index}.npy', np.array(X))\n",
|
210 |
+
" np.save(f'/content/drive/MyDrive/labels_batch_{exercise_folder}_{batch_index}.npy', np.array(y))\n",
|
211 |
+
" X = [] # Reset lists\n",
|
212 |
+
" y = []\n",
|
213 |
+
"\n",
|
214 |
+
" return True\n",
|
215 |
+
"\n",
|
216 |
+
"# Define the parent directory containing all exercise folders\n",
|
217 |
+
"parent_dir = '/content/drive/MyDrive/correct/correct'\n",
|
218 |
+
"process_videos_in_batches(parent_dir, batch_size=10)"
|
219 |
+
],
|
220 |
+
"metadata": {
|
221 |
+
"colab": {
|
222 |
+
"base_uri": "https://localhost:8080/"
|
223 |
+
},
|
224 |
+
"id": "4MUyUyh2-ruX",
|
225 |
+
"outputId": "9a1bad49-d50d-44b3-e9e6-d1e311cee30e"
|
226 |
+
},
|
227 |
+
"execution_count": null,
|
228 |
+
"outputs": [
|
229 |
+
{
|
230 |
+
"metadata": {
|
231 |
+
"tags": null
|
232 |
+
},
|
233 |
+
"name": "stderr",
|
234 |
+
"output_type": "stream",
|
235 |
+
"text": [
|
236 |
+
"/usr/local/lib/python3.10/dist-packages/google/protobuf/symbol_database.py:55: UserWarning: SymbolDatabase.GetPrototype() is deprecated. Please use message_factory.GetMessageClass() instead. SymbolDatabase.GetPrototype() will be removed soon.\n",
|
237 |
+
" warnings.warn('SymbolDatabase.GetPrototype() is deprecated. Please '\n"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"source": [
|
245 |
+
"import numpy as np\n",
|
246 |
+
"import os\n",
|
247 |
+
"\n",
|
248 |
+
"# Define the directory where your batches are stored\n",
|
249 |
+
"batch_dir = '/content/drive/MyDrive/'\n",
|
250 |
+
"\n",
|
251 |
+
"# Initialize empty lists to store data and labels\n",
|
252 |
+
"X = []\n",
|
253 |
+
"y = []\n",
|
254 |
+
"\n",
|
255 |
+
"# Loop through saved batch files\n",
|
256 |
+
"for file_name in os.listdir(batch_dir):\n",
|
257 |
+
" if file_name.endswith('.npy'):\n",
|
258 |
+
" if 'keypoints_batch' in file_name:\n",
|
259 |
+
" X.append(np.load(os.path.join(batch_dir, file_name)))\n",
|
260 |
+
" elif 'labels_batch' in file_name:\n",
|
261 |
+
" y.append(np.load(os.path.join(batch_dir, file_name)))\n",
|
262 |
+
"\n",
|
263 |
+
"# Combine all batches into a single dataset\n",
|
264 |
+
"X = np.concatenate(X, axis=0)\n",
|
265 |
+
"y = np.concatenate(y, axis=0)\n",
|
266 |
+
"\n",
|
267 |
+
"print(f'Loaded {X.shape[0]} samples for training.')\n"
|
268 |
+
],
|
269 |
+
"metadata": {
|
270 |
+
"id": "h79UADwu-9bn",
|
271 |
+
"colab": {
|
272 |
+
"base_uri": "https://localhost:8080/"
|
273 |
+
},
|
274 |
+
"outputId": "4cbeaae3-f6e4-4467-86d8-a7d098ca78dd"
|
275 |
+
},
|
276 |
+
"execution_count": null,
|
277 |
+
"outputs": [
|
278 |
+
{
|
279 |
+
"output_type": "stream",
|
280 |
+
"name": "stdout",
|
281 |
+
"text": [
|
282 |
+
"Loaded 102 samples for training.\n"
|
283 |
+
]
|
284 |
+
}
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"source": [
|
290 |
+
"from sklearn.model_selection import train_test_split\n",
|
291 |
+
"from tensorflow.keras.models import Sequential\n",
|
292 |
+
"from tensorflow.keras.layers import LSTM, Dense\n",
|
293 |
+
"\n",
|
294 |
+
"# Split data into training and testing sets\n",
|
295 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
296 |
+
"\n",
|
297 |
+
"# Define the LSTM model\n",
|
298 |
+
"model = Sequential([\n",
|
299 |
+
" LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])),\n",
|
300 |
+
" LSTM(64),\n",
|
301 |
+
" Dense(32, activation='relu'),\n",
|
302 |
+
" Dense(1, activation='sigmoid')\n",
|
303 |
+
"])\n",
|
304 |
+
"\n",
|
305 |
+
"# Compile the model\n",
|
306 |
+
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
|
307 |
+
"\n",
|
308 |
+
"# Train the model\n",
|
309 |
+
"history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))\n",
|
310 |
+
"\n",
|
311 |
+
"# Save the trained model\n",
|
312 |
+
"model.save('lstm_model.h5')\n"
|
313 |
+
],
|
314 |
+
"metadata": {
|
315 |
+
"id": "jyr0HzDTBFWQ",
|
316 |
+
"colab": {
|
317 |
+
"base_uri": "https://localhost:8080/"
|
318 |
+
},
|
319 |
+
"outputId": "ece2fc87-75aa-4b9a-e40b-f1bbb4d6a7c7"
|
320 |
+
},
|
321 |
+
"execution_count": null,
|
322 |
+
"outputs": [
|
323 |
+
{
|
324 |
+
"output_type": "stream",
|
325 |
+
"name": "stderr",
|
326 |
+
"text": [
|
327 |
+
"/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
328 |
+
" super().__init__(**kwargs)\n"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"output_type": "stream",
|
333 |
+
"name": "stdout",
|
334 |
+
"text": [
|
335 |
+
"Epoch 1/20\n",
|
336 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 307ms/step - accuracy: 0.6601 - loss: 0.6587 - val_accuracy: 1.0000 - val_loss: 0.5224\n",
|
337 |
+
"Epoch 2/20\n",
|
338 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 110ms/step - accuracy: 1.0000 - loss: 0.4933 - val_accuracy: 1.0000 - val_loss: 0.3953\n",
|
339 |
+
"Epoch 3/20\n",
|
340 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 0.3809 - val_accuracy: 1.0000 - val_loss: 0.2403\n",
|
341 |
+
"Epoch 4/20\n",
|
342 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 0.2357 - val_accuracy: 1.0000 - val_loss: 0.0733\n",
|
343 |
+
"Epoch 5/20\n",
|
344 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 0.0661 - val_accuracy: 1.0000 - val_loss: 0.0144\n",
|
345 |
+
"Epoch 6/20\n",
|
346 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 0.0128 - val_accuracy: 1.0000 - val_loss: 0.0052\n",
|
347 |
+
"Epoch 7/20\n",
|
348 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0047 - val_accuracy: 1.0000 - val_loss: 0.0024\n",
|
349 |
+
"Epoch 8/20\n",
|
350 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step - accuracy: 1.0000 - loss: 0.0022 - val_accuracy: 1.0000 - val_loss: 0.0013\n",
|
351 |
+
"Epoch 9/20\n",
|
352 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 108ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 1.0000 - val_loss: 7.7855e-04\n",
|
353 |
+
"Epoch 10/20\n",
|
354 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 101ms/step - accuracy: 1.0000 - loss: 7.1853e-04 - val_accuracy: 1.0000 - val_loss: 5.1570e-04\n",
|
355 |
+
"Epoch 11/20\n",
|
356 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 106ms/step - accuracy: 1.0000 - loss: 4.8286e-04 - val_accuracy: 1.0000 - val_loss: 3.7081e-04\n",
|
357 |
+
"Epoch 12/20\n",
|
358 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step - accuracy: 1.0000 - loss: 3.5438e-04 - val_accuracy: 1.0000 - val_loss: 2.8507e-04\n",
|
359 |
+
"Epoch 13/20\n",
|
360 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 103ms/step - accuracy: 1.0000 - loss: 2.7463e-04 - val_accuracy: 1.0000 - val_loss: 2.3120e-04\n",
|
361 |
+
"Epoch 14/20\n",
|
362 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 2.2495e-04 - val_accuracy: 1.0000 - val_loss: 1.9555e-04\n",
|
363 |
+
"Epoch 15/20\n",
|
364 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 127ms/step - accuracy: 1.0000 - loss: 1.9260e-04 - val_accuracy: 1.0000 - val_loss: 1.7094e-04\n",
|
365 |
+
"Epoch 16/20\n",
|
366 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 1.6921e-04 - val_accuracy: 1.0000 - val_loss: 1.5331e-04\n",
|
367 |
+
"Epoch 17/20\n",
|
368 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 102ms/step - accuracy: 1.0000 - loss: 1.5150e-04 - val_accuracy: 1.0000 - val_loss: 1.4028e-04\n",
|
369 |
+
"Epoch 18/20\n",
|
370 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 134ms/step - accuracy: 1.0000 - loss: 1.3873e-04 - val_accuracy: 1.0000 - val_loss: 1.3034e-04\n",
|
371 |
+
"Epoch 19/20\n",
|
372 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 163ms/step - accuracy: 1.0000 - loss: 1.2947e-04 - val_accuracy: 1.0000 - val_loss: 1.2256e-04\n",
|
373 |
+
"Epoch 20/20\n",
|
374 |
+
"\u001b[1m3/3\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 186ms/step - accuracy: 1.0000 - loss: 1.2323e-04 - val_accuracy: 1.0000 - val_loss: 1.1630e-04\n"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"output_type": "stream",
|
379 |
+
"name": "stderr",
|
380 |
+
"text": [
|
381 |
+
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
|
382 |
+
]
|
383 |
+
}
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"source": [
|
389 |
+
"# Import libraries\n",
|
390 |
+
"import os\n",
|
391 |
+
"import cv2\n",
|
392 |
+
"import numpy as np\n",
|
393 |
+
"import mediapipe as mp\n",
|
394 |
+
"import tensorflow as tf\n",
|
395 |
+
"from sklearn.model_selection import train_test_split\n",
|
396 |
+
"from tensorflow.keras import Sequential\n",
|
397 |
+
"from tensorflow.keras.layers import LSTM, Dense\n",
|
398 |
+
"\n",
|
399 |
+
"# Initialize MediaPipe\n",
|
400 |
+
"mp_pose = mp.solutions.pose\n",
|
401 |
+
"mp_drawing = mp.solutions.drawing_utils\n",
|
402 |
+
"\n",
|
403 |
+
"def extract_keypoints(video_path):\n",
|
404 |
+
" cap = cv2.VideoCapture(video_path)\n",
|
405 |
+
" pose = mp_pose.Pose()\n",
|
406 |
+
" keypoints = []\n",
|
407 |
+
"\n",
|
408 |
+
" while cap.isOpened():\n",
|
409 |
+
" ret, frame = cap.read()\n",
|
410 |
+
" if not ret:\n",
|
411 |
+
" break\n",
|
412 |
+
"\n",
|
413 |
+
" frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
|
414 |
+
" results = pose.process(frame_rgb)\n",
|
415 |
+
"\n",
|
416 |
+
" if results.pose_landmarks:\n",
|
417 |
+
" landmarks = []\n",
|
418 |
+
" for lm in results.pose_landmarks.landmark:\n",
|
419 |
+
" landmarks.extend([lm.x, lm.y, lm.z, lm.visibility])\n",
|
420 |
+
" keypoints.append(landmarks)\n",
|
421 |
+
" else:\n",
|
422 |
+
" keypoints.append([0] * 132) # 33 landmarks * 4 values (x, y, z, visibility)\n",
|
423 |
+
"\n",
|
424 |
+
" cap.release()\n",
|
425 |
+
" return np.array(keypoints)\n",
|
426 |
+
"\n",
|
427 |
+
"def predict_exercise(video_path, model):\n",
|
428 |
+
" keypoints = extract_keypoints(video_path) # Now extract_keypoints is available\n",
|
429 |
+
" keypoints = np.expand_dims(keypoints, axis=0)\n",
|
430 |
+
" prediction = model.predict(keypoints)\n",
|
431 |
+
"\n",
|
432 |
+
" if prediction > 0.5:\n",
|
433 |
+
" return 'Correct Exercise'\n",
|
434 |
+
" else:\n",
|
435 |
+
" return 'Incorrect Exercise'\n",
|
436 |
+
"\n",
|
437 |
+
"# Example usage:\n",
|
438 |
+
"uploaded_video_path = '/content/drive/MyDrive/correct/correct/decline bench press/dbp_1.mp4'\n",
|
439 |
+
"result = predict_exercise(uploaded_video_path, model)\n",
|
440 |
+
"print(f'Result: {result}')"
|
441 |
+
],
|
442 |
+
"metadata": {
|
443 |
+
"id": "8kcyfLGmBNtZ",
|
444 |
+
"colab": {
|
445 |
+
"base_uri": "https://localhost:8080/"
|
446 |
+
},
|
447 |
+
"outputId": "24c01dea-14fc-4467-ec26-d4635ff022ea"
|
448 |
+
},
|
449 |
+
"execution_count": null,
|
450 |
+
"outputs": [
|
451 |
+
{
|
452 |
+
"output_type": "stream",
|
453 |
+
"name": "stdout",
|
454 |
+
"text": [
|
455 |
+
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 334ms/step\n",
|
456 |
+
"Result: Correct Exercise\n"
|
457 |
+
]
|
458 |
+
}
|
459 |
+
]
|
460 |
+
}
|
461 |
+
]
|
462 |
+
}
|