Update app.py
Browse files
app.py
CHANGED
@@ -3,74 +3,114 @@ import numpy as np
|
|
3 |
import tensorflow as tf
|
4 |
import librosa
|
5 |
import librosa.util
|
|
|
6 |
from sklearn.preprocessing import LabelEncoder
|
7 |
|
8 |
-
|
|
|
9 |
def extract_features(file_path):
|
10 |
try:
|
11 |
-
# Load
|
12 |
y, sr = librosa.load(file_path, sr=8000) # Resample to 8kHz
|
|
|
|
|
13 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
mfcc = librosa.util.fix_length(mfcc, size=100, axis=1)
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
mfcc
|
|
|
|
|
21 |
|
22 |
-
return {"
|
23 |
except Exception as e:
|
24 |
raise ValueError(f"Error in feature extraction: {str(e)}")
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def predict_class(file_path, model, label_encoder):
|
28 |
try:
|
|
|
29 |
features = extract_features(file_path)
|
30 |
-
|
31 |
-
|
32 |
-
# Add batch and channel dimensions for model compatibility
|
33 |
-
mfcc = mfcc[np.newaxis, ..., np.newaxis] # Shape: (1, 13, 100, 1)
|
34 |
|
35 |
# Make prediction
|
36 |
-
prediction = model.predict(
|
37 |
-
|
|
|
|
|
|
|
38 |
return f"Predicted Class: {predicted_class[0]}"
|
39 |
except Exception as e:
|
40 |
return f"Error in prediction: {str(e)}"
|
41 |
|
42 |
-
|
|
|
43 |
model = tf.keras.models.load_model("voice_classification_modelm.h5")
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
47 |
"all_vowels_healthy",
|
48 |
"allvowels_functional",
|
49 |
"allvowels_laryngitis",
|
50 |
-
"
|
51 |
"allvowels_psychogenic",
|
52 |
"allvowels_rlnp",
|
53 |
-
"allvowels_sd"
|
54 |
]
|
55 |
-
|
56 |
-
# Initialize the LabelEncoder
|
57 |
label_encoder = LabelEncoder()
|
58 |
-
label_encoder.fit(
|
59 |
|
60 |
-
|
|
|
61 |
def classify_audio(audio_file):
|
62 |
return predict_class(audio_file, model, label_encoder)
|
63 |
|
64 |
-
|
|
|
65 |
interface = gr.Interface(
|
66 |
fn=classify_audio,
|
67 |
-
inputs=gr.Audio(type="filepath", label="Upload an Audio File"),
|
68 |
outputs=gr.Textbox(label="Predicted Class"),
|
69 |
title="Voice Disorder Classification",
|
70 |
description="Upload an audio file to classify its voice type (e.g., healthy or various disorder types).",
|
71 |
examples=["example_audio.wav"], # Replace with paths to example audio files
|
72 |
)
|
73 |
|
|
|
|
|
|
|
74 |
|
75 |
-
# Launch the Gradio app
|
76 |
-
interface.launch()
|
|
|
3 |
import tensorflow as tf
|
4 |
import librosa
|
5 |
import librosa.util
|
6 |
+
import pickle
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
|
9 |
+
|
10 |
+
# Feature Extraction Function
|
11 |
def extract_features(file_path):
|
12 |
try:
|
13 |
+
# Load audio
|
14 |
y, sr = librosa.load(file_path, sr=8000) # Resample to 8kHz
|
15 |
+
|
16 |
+
# Extract MFCC and deltas
|
17 |
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
18 |
+
mfcc_delta = librosa.feature.delta(mfcc)
|
19 |
+
mfcc_double_delta = librosa.feature.delta(mfcc, order=2)
|
20 |
+
|
21 |
+
# Extract SFCC
|
22 |
+
sfcc = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=13)
|
23 |
+
sfcc_db = librosa.power_to_db(sfcc)
|
24 |
+
sfcc_delta = librosa.feature.delta(sfcc_db)
|
25 |
+
sfcc_double_delta = librosa.feature.delta(sfcc_db, order=2)
|
26 |
+
|
27 |
+
# Calculate HNR (Harmonics-to-Noise Ratio)
|
28 |
+
hnr = np.mean(librosa.effects.harmonic(y)) # Approximation for simplicity
|
29 |
+
|
30 |
+
# Padding/truncating for consistency
|
31 |
mfcc = librosa.util.fix_length(mfcc, size=100, axis=1)
|
32 |
+
mfcc_delta = librosa.util.fix_length(mfcc_delta, size=100, axis=1)
|
33 |
+
mfcc_double_delta = librosa.util.fix_length(mfcc_double_delta, size=100, axis=1)
|
34 |
+
sfcc_db = librosa.util.fix_length(sfcc_db, size=100, axis=1)
|
35 |
+
sfcc_delta = librosa.util.fix_length(sfcc_delta, size=100, axis=1)
|
36 |
+
sfcc_double_delta = librosa.util.fix_length(sfcc_double_delta, size=100, axis=1)
|
37 |
|
38 |
+
# Concatenate all features into a single matrix
|
39 |
+
features = np.vstack([
|
40 |
+
mfcc, mfcc_delta, mfcc_double_delta,
|
41 |
+
sfcc_db, sfcc_delta, sfcc_double_delta
|
42 |
+
])
|
43 |
|
44 |
+
return {"features": features, "hnr": hnr}
|
45 |
except Exception as e:
|
46 |
raise ValueError(f"Error in feature extraction: {str(e)}")
|
47 |
|
48 |
+
|
49 |
+
# Prepare Input Function
|
50 |
+
def prepare_input(features):
|
51 |
+
feature_matrix = features["features"] # Shape: (78, 100)
|
52 |
+
hnr = features["hnr"] # Single scalar value
|
53 |
+
|
54 |
+
# Normalize feature matrix
|
55 |
+
feature_matrix = (feature_matrix - np.mean(feature_matrix)) / np.std(feature_matrix)
|
56 |
+
|
57 |
+
# Add batch and channel dimensions for model compatibility
|
58 |
+
feature_matrix = feature_matrix[np.newaxis, ..., np.newaxis] # Shape: (1, 78, 100, 1)
|
59 |
+
return feature_matrix, hnr
|
60 |
+
|
61 |
+
|
62 |
+
# Prediction Function
|
63 |
def predict_class(file_path, model, label_encoder):
|
64 |
try:
|
65 |
+
# Extract and prepare features
|
66 |
features = extract_features(file_path)
|
67 |
+
feature_matrix, _ = prepare_input(features)
|
|
|
|
|
|
|
68 |
|
69 |
# Make prediction
|
70 |
+
prediction = model.predict(feature_matrix)
|
71 |
+
predicted_index = np.argmax(prediction)
|
72 |
+
|
73 |
+
# Map predicted index to class label
|
74 |
+
predicted_class = label_encoder.inverse_transform([predicted_index])
|
75 |
return f"Predicted Class: {predicted_class[0]}"
|
76 |
except Exception as e:
|
77 |
return f"Error in prediction: {str(e)}"
|
78 |
|
79 |
+
|
80 |
+
# Load Pre-trained Model
|
81 |
model = tf.keras.models.load_model("voice_classification_modelm.h5")
|
82 |
|
83 |
+
# Create Label Encoder
|
84 |
+
# Note: Replace these labels with the actual classes used during training
|
85 |
+
labels = [
|
86 |
"all_vowels_healthy",
|
87 |
"allvowels_functional",
|
88 |
"allvowels_laryngitis",
|
89 |
+
"allvowels_leukoplakia",
|
90 |
"allvowels_psychogenic",
|
91 |
"allvowels_rlnp",
|
92 |
+
"allvowels_sd",
|
93 |
]
|
|
|
|
|
94 |
label_encoder = LabelEncoder()
|
95 |
+
label_encoder.fit(labels)
|
96 |
|
97 |
+
|
98 |
+
# Gradio Interface Function
|
99 |
def classify_audio(audio_file):
|
100 |
return predict_class(audio_file, model, label_encoder)
|
101 |
|
102 |
+
|
103 |
+
# Gradio Interface
|
104 |
interface = gr.Interface(
|
105 |
fn=classify_audio,
|
106 |
+
inputs=gr.Audio(type="filepath", label="Upload an Audio File"),
|
107 |
outputs=gr.Textbox(label="Predicted Class"),
|
108 |
title="Voice Disorder Classification",
|
109 |
description="Upload an audio file to classify its voice type (e.g., healthy or various disorder types).",
|
110 |
examples=["example_audio.wav"], # Replace with paths to example audio files
|
111 |
)
|
112 |
|
113 |
+
# Launch Gradio App
|
114 |
+
if __name__ == "__main__":
|
115 |
+
interface.launch()
|
116 |
|
|
|
|