Spaces:
Sleeping
Sleeping
created template
Browse files
app.py
CHANGED
|
@@ -14,10 +14,14 @@ DATASETS = [
|
|
| 14 |
]
|
| 15 |
MAX_N_LABELS = 5
|
| 16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
| 17 |
-
COL1, COL2 = st.columns([3, 1])
|
| 18 |
-
CONTAINER_TOP = st.container()
|
| 19 |
-
CONTAINER_BODY = st.container()
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
|
|
@@ -55,7 +59,7 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
| 55 |
|
| 56 |
#dataset
|
| 57 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
| 58 |
-
with
|
| 59 |
#Image teste load
|
| 60 |
image_object = dataset['pasta'][0]["image"]
|
| 61 |
st.image(image_object, caption="Uploaded Image", width=300)
|
|
@@ -63,35 +67,41 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
| 63 |
|
| 64 |
#modle instance
|
| 65 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
| 66 |
-
|
| 67 |
|
| 68 |
#classification
|
| 69 |
classification_result = classifier_pipeline(image_object)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
#classification_array.append(classification_result)
|
| 73 |
|
| 74 |
#save classification
|
| 75 |
|
| 76 |
image_count += 1
|
|
|
|
| 77 |
|
| 78 |
return image_count
|
| 79 |
|
|
|
|
| 80 |
def make_template():
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
def main():
|
| 86 |
|
| 87 |
make_template()
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
#CONTAINER_TOP.title("Bulk Image Classification DEMO")
|
| 92 |
-
|
| 93 |
|
| 94 |
-
# Restart or reset your app
|
| 95 |
# if st.button("Restart"):
|
| 96 |
# # Code to restart or reset your app goes here
|
| 97 |
# import subprocess
|
|
@@ -103,29 +113,27 @@ def main():
|
|
| 103 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 104 |
st.write("Soon we will have a dataset template")
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
#st.write("# FLAG 6")
|
| 128 |
-
#st.write(classification_array)
|
| 129 |
|
| 130 |
if __name__ == "__main__":
|
| 131 |
main()
|
|
|
|
| 14 |
]
|
| 15 |
MAX_N_LABELS = 5
|
| 16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# COL1, COL2 = st.columns([3, 1])
|
| 19 |
+
# CONTAINER_TOP = st.container()
|
| 20 |
+
# CONTAINER_BODY = st.container()
|
| 21 |
+
# CONTAINER_FULL = st.container()
|
| 22 |
+
# CONTAINER_LOOP = st.container()
|
| 23 |
+
COL1, COL2
|
| 24 |
+
CONTAINER_TOP, CONTAINER_BODY, CONTAINER_FULL, CONTAINER_LOOP
|
| 25 |
|
| 26 |
|
| 27 |
|
|
|
|
| 59 |
|
| 60 |
#dataset
|
| 61 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
| 62 |
+
with CONTAINER_LOOP:
|
| 63 |
#Image teste load
|
| 64 |
image_object = dataset['pasta'][0]["image"]
|
| 65 |
st.image(image_object, caption="Uploaded Image", width=300)
|
|
|
|
| 67 |
|
| 68 |
#modle instance
|
| 69 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
| 70 |
+
CONTAINER_LOOP.write("### FLAG 4")
|
| 71 |
|
| 72 |
#classification
|
| 73 |
classification_result = classifier_pipeline(image_object)
|
| 74 |
+
CONTAINER_LOOP.write(classification_result)
|
| 75 |
+
CONTAINER_LOOP.write("### FLAG 5")
|
| 76 |
#classification_array.append(classification_result)
|
| 77 |
|
| 78 |
#save classification
|
| 79 |
|
| 80 |
image_count += 1
|
| 81 |
+
CONTAINER_LOOP.write(f"Image count: {image_count}")
|
| 82 |
|
| 83 |
return image_count
|
| 84 |
|
| 85 |
+
|
| 86 |
def make_template():
|
| 87 |
+
CONTAINER_FULL = st.container()
|
| 88 |
+
with CONTAINER_FULL:
|
| 89 |
+
CONTAINER_TOP = st.container()
|
| 90 |
+
CONTAINER_BODY = st.container()
|
| 91 |
+
with CONTAINER_BODY:
|
| 92 |
+
COL1, COL2 = st.columns([3, 1])
|
| 93 |
+
with COL2:
|
| 94 |
+
CONTAINER_LOOP = st.container()
|
| 95 |
+
|
| 96 |
|
| 97 |
def main():
|
| 98 |
|
| 99 |
make_template()
|
| 100 |
|
| 101 |
+
CONTAINER_TOP.title("Bulk Image Classification DEMO")
|
| 102 |
+
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# TODO Restart or reset your app
|
| 105 |
# if st.button("Restart"):
|
| 106 |
# # Code to restart or reset your app goes here
|
| 107 |
# import subprocess
|
|
|
|
| 113 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 114 |
st.write("Soon we will have a dataset template")
|
| 115 |
|
| 116 |
+
#Model
|
| 117 |
+
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
|
| 118 |
+
if chosen_model_name is not None:
|
| 119 |
+
COL1.st.write("You selected", chosen_model_name)
|
| 120 |
+
|
| 121 |
+
#Dataset
|
| 122 |
+
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
|
| 123 |
+
if shosen_dataset_name is not None:
|
| 124 |
+
COL1.st.write("You selected", shosen_dataset_name)
|
| 125 |
+
|
| 126 |
+
#click to classify
|
| 127 |
+
#image_object = dataset['pasta'][0]
|
| 128 |
+
if chosen_model_name is not None and shosen_dataset_name is not None:
|
| 129 |
+
if COL1.button("Classify images"):
|
| 130 |
+
|
| 131 |
+
#classification_array =[]
|
| 132 |
+
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
| 133 |
+
CONTAINER_LOOP.write(f"Classification result: {classification_result}")
|
| 134 |
+
#classification_array.append(classification_result)
|
| 135 |
+
#st.write("# FLAG 6")
|
| 136 |
+
#st.write(classification_array)
|
|
|
|
|
|
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|
| 139 |
main()
|