File size: 1,625 Bytes
3e7ea7a
 
7ee92e6
3e7ea7a
 
 
 
26e663a
 
3e7ea7a
b79836f
3e7ea7a
 
 
 
 
58df5ed
26e663a
 
ffa8147
 
 
 
 
 
 
26e663a
3e7ea7a
 
 
 
 
26e663a
 
 
 
3e7ea7a
 
 
 
 
47a9554
3e7ea7a
 
 
 
 
 
 
 
 
26e663a
 
 
3e7ea7a
 
870ee5f
 
3e7ea7a
12d9740
3e7ea7a
26e663a
 
 
3e7ea7a
 
 
7ee92e6
3e7ea7a
 
2ffda8f
3e7ea7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
from dotenv import load_dotenv
from prompts import qa_template_V0, qa_template_V1, qa_template_V2

# Load environment variables from .env file
load_dotenv()



# Access the value of OPENAI_API_KEY
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY

from langchain_openai import ChatOpenAI

# llm_OpenAi = ChatOpenAI(model="gpt-3.5-turbo", temperature=0,)


from langchain.chat_models import ChatAnyscale

ANYSCALE_ENDPOINT_TOKEN=os.environ.get("ANYSCALE_ENDPOINT_TOKEN")
anyscale_api_key =ANYSCALE_ENDPOINT_TOKEN

llm=ChatAnyscale(anyscale_api_key=anyscale_api_key,temperature=0, model_name='mistralai/Mistral-7B-Instruct-v0.1', streaming=False)


## Create embeddings and splitter

from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter





# Create Embeddings
model_name = "BAAI/bge-large-en"

embedding = HuggingFaceBgeEmbeddings(
    model_name = model_name,
    # model_kwargs = {'device':'cuda'},
    encode_kwargs = {'normalize_embeddings': True}
)

# Create Splitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=100,
)




from langchain_community.vectorstores import FAISS

# persits_directory="./faiss_V04_C500_BGE_large_web_doc_with_split-final"
persits_directory="./faiss_V05_C500_BGE_large-Final"

vectorstore= FAISS.load_local(persits_directory, embedding) 




# Define a custom prompt for Unser manual
from langchain.prompts import PromptTemplate

QA_PROMPT = PromptTemplate(input_variables=["context", "question"],template=qa_template_V2,)