Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
from typing import List, Dict
|
5 |
+
from langchain.text_splitter import (
|
6 |
+
RecursiveCharacterTextSplitter,
|
7 |
+
CharacterTextSplitter,
|
8 |
+
TokenTextSplitter
|
9 |
+
)
|
10 |
+
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
|
11 |
+
from langchain_community.document_loaders import CSVLoader
|
12 |
+
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
15 |
+
from langchain.memory import ConversationBufferMemory
|
16 |
+
from langchain.schema import Document
|
17 |
+
import tempfile
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
21 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
22 |
+
api_token = os.getenv("HF_TOKEN")
|
23 |
+
|
24 |
+
CHUNK_SIZES = {
|
25 |
+
"small": {"recursive": 512, "fixed": 512, "token": 256},
|
26 |
+
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
|
27 |
+
}
|
28 |
+
|
29 |
+
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
|
30 |
+
"""Get text splitter based on strategy"""
|
31 |
+
splitters = {
|
32 |
+
"recursive": RecursiveCharacterTextSplitter(
|
33 |
+
chunk_size=chunk_size,
|
34 |
+
chunk_overlap=chunk_overlap
|
35 |
+
),
|
36 |
+
"fixed": CharacterTextSplitter(
|
37 |
+
chunk_size=chunk_size,
|
38 |
+
chunk_overlap=chunk_overlap
|
39 |
+
),
|
40 |
+
"token": TokenTextSplitter(
|
41 |
+
chunk_size=chunk_size,
|
42 |
+
chunk_overlap=chunk_overlap
|
43 |
+
)
|
44 |
+
}
|
45 |
+
return splitters.get(strategy)
|
46 |
+
|
47 |
+
def csv_to_documents(file_path: str) -> List[Document]:
|
48 |
+
"""Convert CSV file to LangChain documents with enhanced metadata"""
|
49 |
+
try:
|
50 |
+
# Read CSV file
|
51 |
+
df = pd.read_csv(file_path)
|
52 |
+
|
53 |
+
# Get basic info about the CSV
|
54 |
+
filename = os.path.basename(file_path)
|
55 |
+
total_rows = len(df)
|
56 |
+
columns = list(df.columns)
|
57 |
+
|
58 |
+
documents = []
|
59 |
+
|
60 |
+
# Create documents from each row
|
61 |
+
for idx, row in df.iterrows():
|
62 |
+
# Create a readable text representation of the row
|
63 |
+
row_text_parts = []
|
64 |
+
|
65 |
+
# Add column headers and values
|
66 |
+
for col in df.columns:
|
67 |
+
value = str(row[col]) if pd.notna(row[col]) else "N/A"
|
68 |
+
row_text_parts.append(f"{col}: {value}")
|
69 |
+
|
70 |
+
# Combine all column-value pairs
|
71 |
+
content = "\n".join(row_text_parts)
|
72 |
+
|
73 |
+
# Create document with rich metadata
|
74 |
+
doc = Document(
|
75 |
+
page_content=content,
|
76 |
+
metadata={
|
77 |
+
"source": filename,
|
78 |
+
"row": idx + 1, # 1-based row numbering
|
79 |
+
"total_rows": total_rows,
|
80 |
+
"columns": ", ".join(columns),
|
81 |
+
"file_path": file_path
|
82 |
+
}
|
83 |
+
)
|
84 |
+
documents.append(doc)
|
85 |
+
|
86 |
+
return documents
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error processing CSV file {file_path}: {str(e)}")
|
90 |
+
return []
|
91 |
+
|
92 |
+
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
|
93 |
+
"""Load and process CSV documents"""
|
94 |
+
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
|
95 |
+
|
96 |
+
# Load all CSV files and convert to documents
|
97 |
+
all_documents = []
|
98 |
+
for file_path in list_file_path:
|
99 |
+
documents = csv_to_documents(file_path)
|
100 |
+
all_documents.extend(documents)
|
101 |
+
|
102 |
+
if not all_documents:
|
103 |
+
return []
|
104 |
+
|
105 |
+
# Apply text splitting
|
106 |
+
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
|
107 |
+
doc_splits = text_splitter.split_documents(all_documents)
|
108 |
+
|
109 |
+
return doc_splits
|
110 |
+
|
111 |
+
def create_db(splits, db_choice: str = "faiss"):
|
112 |
+
"""Create vector database from document splits"""
|
113 |
+
embeddings = HuggingFaceEmbeddings()
|
114 |
+
db_creators = {
|
115 |
+
"faiss": lambda: FAISS.from_documents(splits, embeddings),
|
116 |
+
"chroma": lambda: Chroma.from_documents(splits, embeddings),
|
117 |
+
"qdrant": lambda: Qdrant.from_documents(
|
118 |
+
splits,
|
119 |
+
embeddings,
|
120 |
+
location=":memory:",
|
121 |
+
collection_name="csv_docs"
|
122 |
+
)
|
123 |
+
}
|
124 |
+
return db_creators[db_choice]()
|
125 |
+
|
126 |
+
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
|
127 |
+
"""Initialize vector database with error handling"""
|
128 |
+
try:
|
129 |
+
if not list_file_obj:
|
130 |
+
return None, "No files uploaded. Please upload CSV documents first."
|
131 |
+
|
132 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
133 |
+
if not list_file_path:
|
134 |
+
return None, "No valid files found. Please upload CSV documents."
|
135 |
+
|
136 |
+
# Validate that all files are CSV
|
137 |
+
non_csv_files = [path for path in list_file_path if not path.lower().endswith('.csv')]
|
138 |
+
if non_csv_files:
|
139 |
+
return None, f"Non-CSV files detected: {', '.join([os.path.basename(f) for f in non_csv_files])}. Please upload only CSV files."
|
140 |
+
|
141 |
+
progress(0.2, desc="Loading CSV files...")
|
142 |
+
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
|
143 |
+
|
144 |
+
if not doc_splits:
|
145 |
+
return None, "No content extracted from CSV documents. Please check if the files contain data."
|
146 |
+
|
147 |
+
progress(0.6, desc="Creating vector database...")
|
148 |
+
vector_db = create_db(doc_splits, db_choice)
|
149 |
+
|
150 |
+
progress(1.0, desc="Database created successfully!")
|
151 |
+
|
152 |
+
num_files = len(list_file_path)
|
153 |
+
num_chunks = len(doc_splits)
|
154 |
+
file_names = [os.path.basename(f) for f in list_file_path]
|
155 |
+
|
156 |
+
success_msg = (f"Database created successfully!\n"
|
157 |
+
f"π Files processed: {num_files} ({', '.join(file_names)})\n"
|
158 |
+
f"π Document chunks: {num_chunks}\n"
|
159 |
+
f"π§ Strategy: {splitting_strategy} splitting\n"
|
160 |
+
f"πΎ Database: {db_choice}")
|
161 |
+
|
162 |
+
return vector_db, success_msg
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
return None, f"Error creating database: {str(e)}"
|
166 |
+
|
167 |
+
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
168 |
+
"""Initialize LLM chain with error handling"""
|
169 |
+
try:
|
170 |
+
if vector_db is None:
|
171 |
+
return None, "Please create vector database first."
|
172 |
+
|
173 |
+
progress(0.3, desc="Initializing LLM...")
|
174 |
+
llm_model = list_llm[llm_choice]
|
175 |
+
|
176 |
+
llm = HuggingFaceEndpoint(
|
177 |
+
repo_id=llm_model,
|
178 |
+
huggingfacehub_api_token=api_token,
|
179 |
+
temperature=temperature,
|
180 |
+
max_new_tokens=max_tokens,
|
181 |
+
top_k=top_k
|
182 |
+
)
|
183 |
+
|
184 |
+
progress(0.7, desc="Setting up memory and retriever...")
|
185 |
+
memory = ConversationBufferMemory(
|
186 |
+
memory_key="chat_history",
|
187 |
+
output_key='answer',
|
188 |
+
return_messages=True
|
189 |
+
)
|
190 |
+
|
191 |
+
retriever = vector_db.as_retriever()
|
192 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
193 |
+
llm,
|
194 |
+
retriever=retriever,
|
195 |
+
memory=memory,
|
196 |
+
return_source_documents=True
|
197 |
+
)
|
198 |
+
|
199 |
+
progress(1.0, desc="LLM initialized successfully!")
|
200 |
+
|
201 |
+
success_msg = (f"LLM initialized successfully!\n"
|
202 |
+
f"π€ Model: {os.path.basename(llm_model)}\n"
|
203 |
+
f"π‘οΈ Temperature: {temperature}\n"
|
204 |
+
f"π Max tokens: {max_tokens}\n"
|
205 |
+
f"π Top K: {top_k}")
|
206 |
+
|
207 |
+
return qa_chain, success_msg
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
return None, f"Error initializing LLM: {str(e)}"
|
211 |
+
|
212 |
+
def conversation(qa_chain, message, history):
|
213 |
+
"""Conversation function with CSV-specific source formatting"""
|
214 |
+
try:
|
215 |
+
response = qa_chain.invoke({
|
216 |
+
"question": message,
|
217 |
+
"chat_history": [(hist[0], hist[1]) for hist in history]
|
218 |
+
})
|
219 |
+
|
220 |
+
response_answer = response["answer"]
|
221 |
+
if "Helpful Answer:" in response_answer:
|
222 |
+
response_answer = response_answer.split("Helpful Answer:")[-1].strip()
|
223 |
+
|
224 |
+
# Get source documents
|
225 |
+
sources = response["source_documents"][:3]
|
226 |
+
source_contents = []
|
227 |
+
source_info = []
|
228 |
+
|
229 |
+
for source in sources:
|
230 |
+
# Format source content for CSV data
|
231 |
+
content = source.page_content.strip()
|
232 |
+
metadata = source.metadata
|
233 |
+
|
234 |
+
# Create readable source info for CSV
|
235 |
+
source_file = metadata.get("source", "Unknown")
|
236 |
+
row_num = metadata.get("row", 0)
|
237 |
+
|
238 |
+
source_contents.append(content)
|
239 |
+
source_info.append(f"File: {source_file} | Row: {row_num}")
|
240 |
+
|
241 |
+
# Pad with empty values if needed
|
242 |
+
while len(source_contents) < 3:
|
243 |
+
source_contents.append("")
|
244 |
+
source_info.append("No source")
|
245 |
+
|
246 |
+
return (
|
247 |
+
qa_chain,
|
248 |
+
gr.update(value=""),
|
249 |
+
history + [(message, response_answer)],
|
250 |
+
source_contents[0],
|
251 |
+
source_info[0],
|
252 |
+
source_contents[1],
|
253 |
+
source_info[1],
|
254 |
+
source_contents[2],
|
255 |
+
source_info[2]
|
256 |
+
)
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
error_msg = f"Error in conversation: {str(e)}"
|
260 |
+
return (
|
261 |
+
qa_chain,
|
262 |
+
gr.update(value=""),
|
263 |
+
history + [(message, error_msg)],
|
264 |
+
"", "Error", "", "Error", "", "Error"
|
265 |
+
)
|
266 |
+
|
267 |
+
def demo():
|
268 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="green", secondary_hue="blue", neutral_hue="slate")) as demo:
|
269 |
+
vector_db = gr.State()
|
270 |
+
qa_chain = gr.State()
|
271 |
+
|
272 |
+
gr.HTML("<center><h1>π RAG CSV Chatbot</h1></center>")
|
273 |
+
gr.HTML("<center><p>Upload CSV files and chat with your data using advanced RAG techniques</p></center>")
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column(scale=86):
|
277 |
+
gr.Markdown("### π Step 1 - Configure and Initialize RAG Pipeline")
|
278 |
+
|
279 |
+
document = gr.Files(
|
280 |
+
height=300,
|
281 |
+
file_count="multiple",
|
282 |
+
file_types=[".csv"],
|
283 |
+
interactive=True,
|
284 |
+
label="Upload CSV documents",
|
285 |
+
elem_id="file_upload"
|
286 |
+
)
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
splitting_strategy = gr.Radio(
|
290 |
+
["recursive", "fixed", "token"],
|
291 |
+
label="Text Splitting Strategy",
|
292 |
+
value="recursive",
|
293 |
+
info="How to split CSV data into chunks"
|
294 |
+
)
|
295 |
+
db_choice = gr.Radio(
|
296 |
+
["faiss", "chroma", "qdrant"],
|
297 |
+
label="Vector Database",
|
298 |
+
value="faiss",
|
299 |
+
info="Vector storage backend"
|
300 |
+
)
|
301 |
+
chunk_size = gr.Radio(
|
302 |
+
["small", "medium"],
|
303 |
+
label="Chunk Size",
|
304 |
+
value="medium",
|
305 |
+
info="Size of text chunks for processing"
|
306 |
+
)
|
307 |
+
|
308 |
+
with gr.Row():
|
309 |
+
db_btn = gr.Button("π Create Vector Database", variant="primary")
|
310 |
+
|
311 |
+
db_progress = gr.Textbox(
|
312 |
+
value="β Not initialized - Please upload CSV files and create database",
|
313 |
+
show_label=False,
|
314 |
+
interactive=False,
|
315 |
+
lines=4
|
316 |
+
)
|
317 |
+
|
318 |
+
gr.Markdown("### π€ Step 2 - Configure LLM")
|
319 |
+
|
320 |
+
llm_choice = gr.Radio(
|
321 |
+
list_llm_simple,
|
322 |
+
label="Available LLMs",
|
323 |
+
value=list_llm_simple[0],
|
324 |
+
type="index",
|
325 |
+
info="Choose the language model for responses"
|
326 |
+
)
|
327 |
+
|
328 |
+
with gr.Accordion("π§ LLM Parameters", open=False):
|
329 |
+
temperature = gr.Slider(
|
330 |
+
minimum=0.01,
|
331 |
+
maximum=1.0,
|
332 |
+
value=0.5,
|
333 |
+
step=0.1,
|
334 |
+
label="Temperature",
|
335 |
+
info="Controls randomness in responses"
|
336 |
+
)
|
337 |
+
max_tokens = gr.Slider(
|
338 |
+
minimum=128,
|
339 |
+
maximum=4096,
|
340 |
+
value=2048,
|
341 |
+
step=128,
|
342 |
+
label="Max Tokens",
|
343 |
+
info="Maximum length of generated responses"
|
344 |
+
)
|
345 |
+
top_k = gr.Slider(
|
346 |
+
minimum=1,
|
347 |
+
maximum=10,
|
348 |
+
value=3,
|
349 |
+
step=1,
|
350 |
+
label="Top K",
|
351 |
+
info="Number of top documents to retrieve"
|
352 |
+
)
|
353 |
+
|
354 |
+
with gr.Row():
|
355 |
+
init_llm_btn = gr.Button("π Initialize LLM", variant="primary", interactive=False)
|
356 |
+
|
357 |
+
llm_progress = gr.Textbox(
|
358 |
+
value="β Not initialized - Please create database first",
|
359 |
+
show_label=False,
|
360 |
+
interactive=False,
|
361 |
+
lines=4
|
362 |
+
)
|
363 |
+
|
364 |
+
with gr.Column(scale=200):
|
365 |
+
gr.Markdown("### π¬ Step 3 - Chat with Your CSV Data")
|
366 |
+
|
367 |
+
chatbot = gr.Chatbot(
|
368 |
+
height=505,
|
369 |
+
show_label=False,
|
370 |
+
elem_id="chatbot",
|
371 |
+
placeholder="Your conversation will appear here after initializing the system..."
|
372 |
+
)
|
373 |
+
|
374 |
+
with gr.Accordion("π Source References", open=False):
|
375 |
+
gr.Markdown("*Top 3 most relevant sources from your CSV data:*")
|
376 |
+
with gr.Row():
|
377 |
+
with gr.Column():
|
378 |
+
source1 = gr.Textbox(label="π Source 1", lines=3, interactive=False)
|
379 |
+
info1 = gr.Textbox(label="βΉοΈ Source 1 Info", interactive=False)
|
380 |
+
with gr.Row():
|
381 |
+
with gr.Column():
|
382 |
+
source2 = gr.Textbox(label="π Source 2", lines=3, interactive=False)
|
383 |
+
info2 = gr.Textbox(label="βΉοΈ Source 2 Info", interactive=False)
|
384 |
+
with gr.Row():
|
385 |
+
with gr.Column():
|
386 |
+
source3 = gr.Textbox(label="π Source 3", lines=3, interactive=False)
|
387 |
+
info3 = gr.Textbox(label="βΉοΈ Source 3 Info", interactive=False)
|
388 |
+
|
389 |
+
with gr.Row():
|
390 |
+
msg = gr.Textbox(
|
391 |
+
placeholder="Ask questions about your CSV data... (e.g., 'What are the main trends?', 'Summarize the key findings', 'What patterns do you see?')",
|
392 |
+
show_label=False,
|
393 |
+
scale=4,
|
394 |
+
interactive=False
|
395 |
+
)
|
396 |
+
submit_btn = gr.Button("π€ Send", scale=1, interactive=False)
|
397 |
+
|
398 |
+
with gr.Row():
|
399 |
+
clear_btn = gr.ClearButton(
|
400 |
+
[msg, chatbot, source1, info1, source2, info2, source3, info3],
|
401 |
+
value="ποΈ Clear Chat",
|
402 |
+
scale=1
|
403 |
+
)
|
404 |
+
|
405 |
+
gr.Markdown("### π‘ Tips for Better Results")
|
406 |
+
gr.Markdown("""
|
407 |
+
- **Ask specific questions** about your data (e.g., "What are the highest values in column X?")
|
408 |
+
- **Request summaries** (e.g., "Summarize the key insights from this dataset")
|
409 |
+
- **Compare data** (e.g., "Compare categories A and B")
|
410 |
+
- **Ask for trends** (e.g., "What patterns do you see over time?")
|
411 |
+
""")
|
412 |
+
|
413 |
+
# Event handlers
|
414 |
+
db_btn.click(
|
415 |
+
initialize_database,
|
416 |
+
inputs=[document, splitting_strategy, chunk_size, db_choice],
|
417 |
+
outputs=[vector_db, db_progress]
|
418 |
+
).then(
|
419 |
+
lambda x: gr.update(interactive=True) if x is not None else gr.update(interactive=False),
|
420 |
+
inputs=[vector_db],
|
421 |
+
outputs=[init_llm_btn]
|
422 |
+
)
|
423 |
+
|
424 |
+
init_llm_btn.click(
|
425 |
+
initialize_llmchain,
|
426 |
+
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
|
427 |
+
outputs=[qa_chain, llm_progress]
|
428 |
+
).then(
|
429 |
+
lambda x: [gr.update(interactive=True), gr.update(interactive=True)] if x is not None else [gr.update(interactive=False), gr.update(interactive=False)],
|
430 |
+
inputs=[qa_chain],
|
431 |
+
outputs=[msg, submit_btn]
|
432 |
+
)
|
433 |
+
|
434 |
+
msg.submit(
|
435 |
+
conversation,
|
436 |
+
inputs=[qa_chain, msg, chatbot],
|
437 |
+
outputs=[qa_chain, msg, chatbot, source1, info1, source2, info2, source3, info3]
|
438 |
+
)
|
439 |
+
|
440 |
+
submit_btn.click(
|
441 |
+
conversation,
|
442 |
+
inputs=[qa_chain, msg, chatbot],
|
443 |
+
outputs=[qa_chain, msg, chatbot, source1, info1, source2, info2, source3, info3]
|
444 |
+
)
|
445 |
+
|
446 |
+
clear_btn.click(
|
447 |
+
lambda: [[], "", "", "", "", "", ""],
|
448 |
+
outputs=[chatbot, source1, info1, source2, info2, source3, info3]
|
449 |
+
)
|
450 |
+
|
451 |
+
demo.queue().launch(debug=True)
|
452 |
+
|
453 |
+
if __name__ == "__main__":
|
454 |
+
demo()
|