import gradio as gr import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token='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', torch_dtype=torch.float32, low_cpu_mem_usage=True) has_cuda = torch.cuda.is_available() device = torch.device('cpu' if not has_cuda else 'cuda') pipe = pipe.to(device) def convert(prompt): samples = 4 generator = torch.Generator(device=device) torch.cuda.empty_cache() with autocast("cuda"): images_list = pipe( [prompt] * samples, height=256, width=384, num_inference_steps=50, ) images = [] for i, image in enumerate(images_list["sample"]): images.append(image) return images gr.Interface(convert, inputs = [gr.inputs.Textbox(label="Enter text")], outputs = [gr.outputs.Image(label="Generated Image")], title="Text to Image Generation").launch()