Spaces:
Runtime error
Runtime error
sandrawang1031
commited on
Commit
•
c0b640d
1
Parent(s):
4b406e7
resize image
Browse files- app.py +5 -7
- model.py +22 -5
- requirements.txt +2 -1
app.py
CHANGED
@@ -4,9 +4,7 @@ import os
|
|
4 |
from model import VirtualStagingToolV2
|
5 |
|
6 |
|
7 |
-
def predict(
|
8 |
-
init_image = image.convert("RGB").resize((512, 512))
|
9 |
-
|
10 |
vs_tool = VirtualStagingToolV2(diffusion_version="stabilityai/stable-diffusion-2-inpainting")
|
11 |
if backyard_style:
|
12 |
style = backyard_style
|
@@ -83,10 +81,10 @@ with image_blocks as demo:
|
|
83 |
)
|
84 |
|
85 |
with gr.Column():
|
86 |
-
mask_image = gr.Image(label="Mask image", elem_id="mask-img", type="pil").style(height=
|
87 |
-
image_out_1 = gr.Image(label="Output 1", elem_id="output-img-1", type="pil").style(height=
|
88 |
-
image_out_2 = gr.Image(label="Output 2", elem_id="output-img-2", type="pil").style(height=
|
89 |
-
image_out_3 = gr.Image(label="Output 3", elem_id="output-img-3", type="pil").style(height=
|
90 |
|
91 |
btn.click(fn=predict, inputs=[image, style, backyard_style, color_preference, additional_info],
|
92 |
outputs=[image_out_1, image_out_2, image_out_3, mask_image])
|
|
|
4 |
from model import VirtualStagingToolV2
|
5 |
|
6 |
|
7 |
+
def predict(init_image, style, backyard_style, color_preference, additional_info):
|
|
|
|
|
8 |
vs_tool = VirtualStagingToolV2(diffusion_version="stabilityai/stable-diffusion-2-inpainting")
|
9 |
if backyard_style:
|
10 |
style = backyard_style
|
|
|
81 |
)
|
82 |
|
83 |
with gr.Column():
|
84 |
+
mask_image = gr.Image(label="Mask image", elem_id="mask-img", type="pil").style(height=400)
|
85 |
+
image_out_1 = gr.Image(label="Output 1", elem_id="output-img-1", type="pil").style(height=400)
|
86 |
+
image_out_2 = gr.Image(label="Output 2", elem_id="output-img-2", type="pil").style(height=400)
|
87 |
+
image_out_3 = gr.Image(label="Output 3", elem_id="output-img-3", type="pil").style(height=400)
|
88 |
|
89 |
btn.click(fn=predict, inputs=[image, style, backyard_style, color_preference, additional_info],
|
90 |
outputs=[image_out_1, image_out_2, image_out_3, mask_image])
|
model.py
CHANGED
@@ -3,6 +3,7 @@ import matplotlib.pyplot as plt
|
|
3 |
import matplotlib.patches as mpatches
|
4 |
from matplotlib import cm
|
5 |
|
|
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
|
@@ -22,8 +23,12 @@ class VirtualStagingToolV2():
|
|
22 |
self.segmentation_version = segmentation_version
|
23 |
self.diffusion_version = diffusion_version
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
self.diffution_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
29 |
self.diffusion_version,
|
@@ -44,6 +49,18 @@ class VirtualStagingToolV2():
|
|
44 |
mask[np.isin(prediction_array, mask_items)] = 0
|
45 |
mask[~np.isin(prediction_array, mask_items)] = 255
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# # # Create a PIL Image object from the mask
|
48 |
mask_image = Image.fromarray(mask, mode='L')
|
49 |
# display(mask_image)
|
@@ -84,7 +101,7 @@ class VirtualStagingToolV2():
|
|
84 |
mask_items = [1, 2, 4, 25, 32]
|
85 |
room = 'backyard'
|
86 |
elif 73 in label_ids or 50 in label_ids or 61 in label_ids:
|
87 |
-
mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 118, 124, 129
|
88 |
]
|
89 |
room = 'kitchen'
|
90 |
elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
|
@@ -128,12 +145,12 @@ class VirtualStagingToolV2():
|
|
128 |
|
129 |
|
130 |
if room == 'kitchen':
|
131 |
-
items = [i for i in items if i in ['
|
132 |
elif room == 'bedroom':
|
133 |
items = [i for i in items if i in ['bed ', 'table', 'chest of drawers', 'desk', 'armchair', 'wardrobe']]
|
134 |
elif room == 'bathroom':
|
135 |
items = [i for i in items if
|
136 |
-
i in ['shower', 'bathtub', '
|
137 |
elif room == 'living room':
|
138 |
items = [i for i in items if
|
139 |
i in ['table', 'sofa', 'chest of drawers', 'armchair', 'cabinet', 'coffee table']]
|
|
|
3 |
import matplotlib.patches as mpatches
|
4 |
from matplotlib import cm
|
5 |
|
6 |
+
import cv2
|
7 |
from PIL import Image
|
8 |
import numpy as np
|
9 |
|
|
|
23 |
self.segmentation_version = segmentation_version
|
24 |
self.diffusion_version = diffusion_version
|
25 |
|
26 |
+
if segmentation_version == "openmmlab/upernet-convnext-tiny":
|
27 |
+
self.feature_extractor = AutoImageProcessor.from_pretrained(self.segmentation_version)
|
28 |
+
self.segmentation_model = UperNetForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
29 |
+
elif segmentation_version == "nvidia/segformer-b5-finetuned-ade-640-640":
|
30 |
+
self.feature_extractor = SegformerFeatureExtractor.from_pretrained(self.segmentation_version)
|
31 |
+
self.segmentation_model = SegformerForSemanticSegmentation.from_pretrained(self.segmentation_version)
|
32 |
|
33 |
self.diffution_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
34 |
self.diffusion_version,
|
|
|
49 |
mask[np.isin(prediction_array, mask_items)] = 0
|
50 |
mask[~np.isin(prediction_array, mask_items)] = 255
|
51 |
|
52 |
+
buffer_size = 10
|
53 |
+
|
54 |
+
# Dilate the binary image
|
55 |
+
kernel = np.ones((buffer_size, buffer_size), np.uint8)
|
56 |
+
dilated_image = cv2.dilate(mask, kernel, iterations=1)
|
57 |
+
|
58 |
+
# Subtract the original binary image
|
59 |
+
buffer_area = dilated_image - mask
|
60 |
+
|
61 |
+
# Apply buffer area to the original image
|
62 |
+
mask = cv2.bitwise_or(mask, buffer_area)
|
63 |
+
|
64 |
# # # Create a PIL Image object from the mask
|
65 |
mask_image = Image.fromarray(mask, mode='L')
|
66 |
# display(mask_image)
|
|
|
101 |
mask_items = [1, 2, 4, 25, 32]
|
102 |
room = 'backyard'
|
103 |
elif 73 in label_ids or 50 in label_ids or 61 in label_ids:
|
104 |
+
mask_items = [0, 3, 5, 8, 14, 50, 61, 71, 73, 118, 124, 129
|
105 |
]
|
106 |
room = 'kitchen'
|
107 |
elif 37 in label_ids or 65 in label_ids or (27 in label_ids and 47 in label_ids and 70 in label_ids):
|
|
|
145 |
|
146 |
|
147 |
if room == 'kitchen':
|
148 |
+
items = [i for i in items if i in ['cabinet', 'shelf', 'counter', 'countertop', 'stool']]
|
149 |
elif room == 'bedroom':
|
150 |
items = [i for i in items if i in ['bed ', 'table', 'chest of drawers', 'desk', 'armchair', 'wardrobe']]
|
151 |
elif room == 'bathroom':
|
152 |
items = [i for i in items if
|
153 |
+
i in ['shower', 'bathtub', 'screen door', 'cabinet']]
|
154 |
elif room == 'living room':
|
155 |
items = [i for i in items if
|
156 |
i in ['table', 'sofa', 'chest of drawers', 'armchair', 'cabinet', 'coffee table']]
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ diffusers==0.16.1
|
|
4 |
accelerate==0.19.0
|
5 |
matplotlib==3.6.2
|
6 |
pillow==9.2.0
|
7 |
-
numpy==1.23.2
|
|
|
|
4 |
accelerate==0.19.0
|
5 |
matplotlib==3.6.2
|
6 |
pillow==9.2.0
|
7 |
+
numpy==1.23.2
|
8 |
+
opencv-python==4.7.0.72
|