Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,20 +11,22 @@ import plotly.graph_objects as go
|
|
11 |
def fetch_ethereum_data():
|
12 |
"""
|
13 |
Fetch historical Ethereum price data using yfinance.
|
14 |
-
Returns DataFrame with
|
|
|
15 |
"""
|
16 |
eth_ticker = yf.Ticker("ETH-USD")
|
17 |
-
# Get data for the past week
|
18 |
hist_data = eth_ticker.history(period="7d", interval="1h")
|
19 |
-
|
|
|
20 |
|
21 |
def prepare_data(data, sequence_length=24):
|
22 |
"""
|
23 |
Prepare data for LSTM model by creating sequences and scaling.
|
24 |
|
25 |
Args:
|
26 |
-
data: DataFrame with price data
|
27 |
-
sequence_length: Number of time steps to use for prediction
|
28 |
"""
|
29 |
# Scale the data
|
30 |
scaler = MinMaxScaler()
|
@@ -47,6 +49,7 @@ def prepare_data(data, sequence_length=24):
|
|
47 |
def create_model(sequence_length):
|
48 |
"""
|
49 |
Create and compile LSTM model for time series prediction.
|
|
|
50 |
"""
|
51 |
model = Sequential([
|
52 |
LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)),
|
@@ -66,14 +69,17 @@ def predict_future_prices(model, last_sequence, scaler, days=7):
|
|
66 |
model: Trained LSTM model
|
67 |
last_sequence: Last sequence of known prices
|
68 |
scaler: Fitted MinMaxScaler
|
69 |
-
days: Number of days to predict
|
70 |
"""
|
71 |
future_predictions = []
|
72 |
current_sequence = last_sequence.copy()
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
# Predict next price
|
76 |
-
scaled_prediction = model.predict(current_sequence.reshape(1, -1, 1))
|
77 |
# Inverse transform to get actual price
|
78 |
prediction = scaler.inverse_transform(scaled_prediction)[0][0]
|
79 |
future_predictions.append(prediction)
|
@@ -86,21 +92,19 @@ def predict_future_prices(model, last_sequence, scaler, days=7):
|
|
86 |
|
87 |
def create_prediction_plot(historical_data, future_predictions, future_dates):
|
88 |
"""
|
89 |
-
Create an interactive plot showing the last week of historical prices
|
|
|
90 |
|
91 |
Args:
|
92 |
-
historical_data: DataFrame with historical price data
|
93 |
future_predictions: List of predicted prices
|
94 |
-
future_dates: List of future
|
95 |
-
"""
|
96 |
-
"""
|
97 |
-
Create an interactive plot showing historical prices and predictions.
|
98 |
"""
|
99 |
fig = go.Figure()
|
100 |
|
101 |
-
# Plot historical data
|
102 |
fig.add_trace(go.Scatter(
|
103 |
-
x=historical_data
|
104 |
y=historical_data['Close'],
|
105 |
name='Historical Prices',
|
106 |
line=dict(color='blue')
|
@@ -115,7 +119,7 @@ def create_prediction_plot(historical_data, future_predictions, future_dates):
|
|
115 |
))
|
116 |
|
117 |
fig.update_layout(
|
118 |
-
title='Ethereum Price Prediction',
|
119 |
xaxis_title='Date',
|
120 |
yaxis_title='Price (USD)',
|
121 |
hovermode='x unified'
|
@@ -126,10 +130,11 @@ def create_prediction_plot(historical_data, future_predictions, future_dates):
|
|
126 |
def predict_ethereum():
|
127 |
"""
|
128 |
Main function for Gradio interface that orchestrates the prediction process.
|
|
|
129 |
"""
|
130 |
# Fetch and prepare data
|
131 |
data = fetch_ethereum_data()
|
132 |
-
sequence_length = 24
|
133 |
X, y, scaler = prepare_data(data, sequence_length)
|
134 |
|
135 |
# Create and train model
|
@@ -142,9 +147,9 @@ def predict_ethereum():
|
|
142 |
# Generate future predictions
|
143 |
future_predictions = predict_future_prices(model, last_sequence, scaler)
|
144 |
|
145 |
-
# Create future dates
|
146 |
-
last_date = data
|
147 |
-
future_dates = [last_date + timedelta(
|
148 |
|
149 |
# Create and return plot
|
150 |
fig = create_prediction_plot(data, future_predictions, future_dates)
|
@@ -156,7 +161,7 @@ iface = gr.Interface(
|
|
156 |
inputs=None,
|
157 |
outputs=gr.Plot(),
|
158 |
title="Ethereum Price Prediction",
|
159 |
-
description="Click to generate a 7-day price prediction for Ethereum based on historical data.",
|
160 |
theme=gr.themes.Base()
|
161 |
)
|
162 |
|
|
|
11 |
def fetch_ethereum_data():
|
12 |
"""
|
13 |
Fetch historical Ethereum price data using yfinance.
|
14 |
+
Returns DataFrame with datetime index and price information.
|
15 |
+
The data is sampled hourly for the past week.
|
16 |
"""
|
17 |
eth_ticker = yf.Ticker("ETH-USD")
|
18 |
+
# Get hourly data for the past week
|
19 |
hist_data = eth_ticker.history(period="7d", interval="1h")
|
20 |
+
# Keep the datetime index and Close price
|
21 |
+
return hist_data[['Close']]
|
22 |
|
23 |
def prepare_data(data, sequence_length=24):
|
24 |
"""
|
25 |
Prepare data for LSTM model by creating sequences and scaling.
|
26 |
|
27 |
Args:
|
28 |
+
data: DataFrame with price data and datetime index
|
29 |
+
sequence_length: Number of time steps to use for prediction (default: 24 hours)
|
30 |
"""
|
31 |
# Scale the data
|
32 |
scaler = MinMaxScaler()
|
|
|
49 |
def create_model(sequence_length):
|
50 |
"""
|
51 |
Create and compile LSTM model for time series prediction.
|
52 |
+
Uses a two-layer LSTM architecture followed by dense layers.
|
53 |
"""
|
54 |
model = Sequential([
|
55 |
LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)),
|
|
|
69 |
model: Trained LSTM model
|
70 |
last_sequence: Last sequence of known prices
|
71 |
scaler: Fitted MinMaxScaler
|
72 |
+
days: Number of days to predict (default: 7)
|
73 |
"""
|
74 |
future_predictions = []
|
75 |
current_sequence = last_sequence.copy()
|
76 |
|
77 |
+
# Convert days to hours since we're using hourly data
|
78 |
+
hours = days * 24
|
79 |
+
|
80 |
+
for _ in range(hours):
|
81 |
# Predict next price
|
82 |
+
scaled_prediction = model.predict(current_sequence.reshape(1, -1, 1), verbose=0)
|
83 |
# Inverse transform to get actual price
|
84 |
prediction = scaler.inverse_transform(scaled_prediction)[0][0]
|
85 |
future_predictions.append(prediction)
|
|
|
92 |
|
93 |
def create_prediction_plot(historical_data, future_predictions, future_dates):
|
94 |
"""
|
95 |
+
Create an interactive plot showing the last week of historical prices
|
96 |
+
and week-ahead predictions with hourly granularity.
|
97 |
|
98 |
Args:
|
99 |
+
historical_data: DataFrame with historical price data and datetime index
|
100 |
future_predictions: List of predicted prices
|
101 |
+
future_dates: List of future datetime indices for predictions
|
|
|
|
|
|
|
102 |
"""
|
103 |
fig = go.Figure()
|
104 |
|
105 |
+
# Plot historical data using the datetime index
|
106 |
fig.add_trace(go.Scatter(
|
107 |
+
x=historical_data.index,
|
108 |
y=historical_data['Close'],
|
109 |
name='Historical Prices',
|
110 |
line=dict(color='blue')
|
|
|
119 |
))
|
120 |
|
121 |
fig.update_layout(
|
122 |
+
title='Ethereum Price Prediction (Hourly)',
|
123 |
xaxis_title='Date',
|
124 |
yaxis_title='Price (USD)',
|
125 |
hovermode='x unified'
|
|
|
130 |
def predict_ethereum():
|
131 |
"""
|
132 |
Main function for Gradio interface that orchestrates the prediction process.
|
133 |
+
Handles hourly data and generates predictions for the next week.
|
134 |
"""
|
135 |
# Fetch and prepare data
|
136 |
data = fetch_ethereum_data()
|
137 |
+
sequence_length = 24 # Use 24 hours of data for prediction
|
138 |
X, y, scaler = prepare_data(data, sequence_length)
|
139 |
|
140 |
# Create and train model
|
|
|
147 |
# Generate future predictions
|
148 |
future_predictions = predict_future_prices(model, last_sequence, scaler)
|
149 |
|
150 |
+
# Create future dates (hourly intervals)
|
151 |
+
last_date = data.index[-1]
|
152 |
+
future_dates = [last_date + timedelta(hours=i+1) for i in range(len(future_predictions))]
|
153 |
|
154 |
# Create and return plot
|
155 |
fig = create_prediction_plot(data, future_predictions, future_dates)
|
|
|
161 |
inputs=None,
|
162 |
outputs=gr.Plot(),
|
163 |
title="Ethereum Price Prediction",
|
164 |
+
description="Click to generate a 7-day price prediction for Ethereum based on hourly historical data.",
|
165 |
theme=gr.themes.Base()
|
166 |
)
|
167 |
|