File size: 6,631 Bytes
f850ef1
 
0c1c745
f850ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d3899
 
f850ef1
 
0c1c745
00d3899
0c1c745
 
 
 
 
 
 
 
 
 
f850ef1
00d3899
 
f850ef1
00d3899
 
 
0c1c745
 
 
f850ef1
00d3899
 
f850ef1
0c1c745
 
f850ef1
 
 
0c1c745
00d3899
 
 
 
 
 
 
0c1c745
f850ef1
 
 
0c1c745
f850ef1
 
 
0c1c745
f850ef1
 
 
 
0c1c745
f850ef1
 
 
0c1c745
 
f850ef1
 
 
0c1c745
f850ef1
 
 
 
 
 
00d3899
f850ef1
00d3899
 
 
 
 
 
0c1c745
 
 
 
 
 
 
 
 
 
 
00d3899
0c1c745
 
 
 
 
00d3899
 
 
 
 
 
0c1c745
00d3899
 
 
 
 
 
0c1c745
 
f850ef1
 
 
 
 
 
 
 
 
0c1c745
f850ef1
 
 
0c1c745
f850ef1
00d3899
f850ef1
0c1c745
00d3899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from langchain import OpenAI, SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
from langchain_openai import AzureChatOpenAI, ChatOpenAI
import pandas as pd
import time
from langchain_core.prompts.prompt import PromptTemplate
import re
from sqlalchemy import create_engine, text
import psycopg2
from psycopg2 import sql
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain_community.callbacks import get_openai_callback
import os
from langchain_openai import ChatOpenAI
# llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")


def init_database(user: str, password: str, host: str, port: str, database: str, sslmode: str = None) -> SQLDatabase:
    """Initialize a connection to the PostgreSQL database."""
    try:
        db_uri = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}"
        if sslmode:
            db_uri += f"?sslmode={sslmode}"
        
        db = SQLDatabase.from_uri(db_uri)
        return db
    except Exception as e:
        st.error("Unable to connect to the database. Please check your credentials and try again.")
        st.stop()  # Stop further execution if an error occurs

def answer_sql(question: str, db: SQLDatabase, chat_history: list, llm) -> str:
    """Generate SQL answer based on the user's question and database content."""
    try:
        prompt = PromptTemplate(
            input_variables=['input', 'table_info', 'top_k'],
            template="""You are a PostgreSQL expert. Given an input question,
                        first create a syntactically correct PostgreSQL query to run,
                        then look at the results of the query and return the answer to the input question.
                        Unless the user specifies in the question a specific number of records to obtain, query for at most {top_k} results using the LIMIT clause as per PostgreSQL.
                        Wrap each column name in double quotes (") to denote them as delimited identifiers.
                        Only use the following tables:\n{table_info}\n\nQuestion: {input}')"""
        )

        QUERY = f"""
        Given an input question, look at the results of the query and return the answer in natural language to the user's question with all the records of SQLResult.
        {question}
        """

        db_chain = SQLDatabaseChain(
            llm=llm, 
            database=db, 
            top_k=100, 
            verbose=True, 
            use_query_checker=True, 
            prompt=prompt, 
            return_intermediate_steps=True
        )

        with get_openai_callback() as cb:
            response = db_chain.invoke({
                "query": QUERY.format(question=question),
                "chat_history": chat_history,
            })["result"]

            print("*" * 55)
            print(f"Total Tokens : {cb.total_tokens}")
            print(f"Prompt Tokens : {cb.prompt_tokens}")
            print(f"Completion Tokens : {cb.completion_tokens}")
            print(f"Total Cost (USD) : ${cb.total_cost}")
            print("*" * 55)

        return response
    except Exception as e:
        st.error("A technical error occurred. Please try again later.")
        st.stop()

if "chat_history" not in st.session_state:
    st.session_state.chat_history = [
      AIMessage(content="Hello! I'm your SQL assistant. Ask me anything about your database."),
    ]

st.set_page_config(page_title="Chat with Postgres", page_icon=":speech_balloon:")
st.title("Chat with Postgres DB")
st.sidebar.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSfbBOY1t6ZMwLejpwbGVQ9p3LKplwt45yxEzeDsEEPibRm4JqIYF3xav53PNRLJwWkdw&usqp=CAU", use_container_width=True)

# Get API key from user
with st.sidebar:
    st.subheader("API Key and Database Credentials")
    
    # Take OpenAI API key from the user
    openai_api_key = st.text_input("Enter your OpenAI API Key:", type="password")
    
    # Database connection fields
    db_type = st.radio("Is your PostgreSQL database on a local server or in the cloud?", ("Local", "Cloud"))
    if db_type == "Local":
        st.write("Enter your local database credentials.")
        host = st.text_input("Host", value="localhost")
        port = st.text_input("Port", value="5432")
        user = st.text_input("User", value="postgres")
        password = st.text_input("Password", type="password")
        database = st.text_input("Database", value="testing_3")
    elif db_type == "Cloud":
        st.write("Enter your cloud database credentials.")
        host = st.text_input("Host (e.g., your-db-host.aws.com)")
        port = st.text_input("Port", value="5432")
        user = st.text_input("User")
        password = st.text_input("Password", type="password")
        database = st.text_input("Database")
        sslmode = st.selectbox("SSL Mode", ["require", "verify-ca", "verify-full", "disable"])

    if st.button("Connect"):
        if openai_api_key:
            os.environ["OPENAI_API_KEY"] = openai_api_key  # Set the OpenAI API key in the environment
            llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo") # Initialize model with user's API key
            try:
                db = init_database(user, password, host, port, database, sslmode if db_type == "Cloud" else None)
                st.session_state.db = db
                st.session_state.llm = llm
                st.success("Connected to the database!")
            except Exception as e:
                st.error("Failed to connect to the database. Please check your details and try again.")
        else:
            st.error("Please enter your OpenAI API key.")

# Main chat interface
for message in st.session_state.chat_history:
    if isinstance(message, AIMessage):
        with st.chat_message("AI"):
            st.markdown(message.content)
    elif isinstance(message, HumanMessage):
        with st.chat_message("Human"):
            st.markdown(message.content)

user_query = st.chat_input("Type a message...")
if user_query:
    st.session_state.chat_history.append(HumanMessage(content=user_query))
    with st.chat_message("Human"):
        st.markdown(user_query)

    with st.chat_message("AI"):
        response = answer_sql(user_query, st.session_state.db, st.session_state.chat_history, st.session_state.llm)
        st.markdown(response)

    st.session_state.chat_history.append(AIMessage(content=response))