Spaces:
Sleeping
Sleeping
File size: 7,108 Bytes
f850ef1 94fa023 f850ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from langchain import OpenAI, SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
# from langchain_openai import AzureChatOpenAI,ChatOpenAI
import pandas as pd
import time
from langchain_core.prompts.prompt import PromptTemplate
import re
from sqlalchemy import create_engine, text
import pandas as pd
import psycopg2
from psycopg2 import sql
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
import os
from langchain_community.callbacks import get_openai_callback
import os
from langchain_groq import ChatGroq
os.environ["GROQ_API_KEY"]="gsk_......................"
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.25)
def init_database(user: str, password: str, host: str, port: str, database: str) -> SQLDatabase:
db_uri = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}"
return SQLDatabase.from_uri(db_uri)
def answer_sql(question: str, db: SQLDatabase, chat_history: list):
try:
# setup llm
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.25)
#There is a table named "data_description" in the database, this table give details about all other tables & columns it contains. Use this information to write a query.
prompt=PromptTemplate(input_variables=['input', 'table_info', 'top_k'],
template="""You are a PostgreSQL expert. Given an input question,
first create a syntactically correct PostgreSQL query to run,
then look at the results of the query and return the answer to the input question.
Unless the user specifies in the question a specific number of records to obtain, query for at most {top_k} results using the LIMIT clause as per PostgreSQL.
You can order the results to return the most informative data in the database.\n
Never query for all columns from a table. You must query only the columns that are needed to answer the question.
Wrap each column name in double quotes (") to denote them as delimited identifiers.
Pay attention to use only the column names you can see in the tables below.
Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
Pay attention to use CURRENT_DATE function to get the current date, if the question involves "today".
Use the following format:\
Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here
Only use the following tables:\n{table_info}\n\nQuestion: {input}')""")
QUERY = """
Given an input question, look at the results of the query and return the answer in natural language to the users question with all the records of SQLResult. Be careful not to truncate the records in output while returning answer. Pay attention to return answer in tabular format only.
Use the following format:
Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here
{question}
"""
db_chain_time_start = time.time() #start time of db
# Setup the database chain
db_chain = SQLDatabaseChain(llm=llm, database=db,top_k=100,verbose=True,use_query_checker=True,prompt=prompt,return_intermediate_steps=True) # verbose=True
db_chain_time_end = time.time() #end time of db
question = QUERY.format(question=question)
with get_openai_callback() as cb:
response_time_start = time.time()
response = db_chain.invoke({
"query": question,
"chat_history": chat_history,
})["result"]
response_time_end = time.time()
token_info = cb
print("*"*55)
print()
print(f"Overall_response_execution_time : {response_time_end-response_time_start}")
print(f"Total Tokens : {cb.total_tokens}")
print(f"Prompt Tokens : {cb.prompt_tokens}")
print(f"Completion Tokens : {cb.completion_tokens}")
print(f"Total Cost (USD) : ${cb.total_cost}")
print()
print("*"*55)
return response
except Exception as e:
st.error("Some technical error occured. Please try again after some time!")
st.stop() # Stop further execution if another error occurs
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="Hello! I'm a your SQL assistant. Ask me anything about your database."),
]
st.set_page_config(page_title="Chat with Postgres", page_icon=":speech_balloon:")
st.title("Chat with Postgres DB")
st.sidebar.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSfbBOY1t6ZMwLejpwbGVQ9p3LKplwt45yxEzeDsEEPibRm4JqIYF3xav53PNRLJwWkdw&usqp=CAU", use_container_width=True)
with st.sidebar:
st.subheader("Postgres Credentials")
st.write("Enter your Credentials & Connect")
st.text_input("Host", value="localhost", key="Host")
st.text_input("Port", value="5432", key="Port")
st.text_input("User", value="postgres", key="User")
st.text_input("Password", type="password", value="QKadmin", key="Password")
st.text_input("Database", value="testing_3", key="Database")
if st.button("Connect"):
with st.spinner("Connecting to database..."):
db = init_database(
st.session_state["User"],
st.session_state["Password"],
st.session_state["Host"],
st.session_state["Port"],
st.session_state["Database"]
)
st.session_state.db = db
st.success("Connected to database!")
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.markdown(message.content)
user_query = st.chat_input("Type a message...")
if user_query is not None and user_query.strip() != "":
st.session_state.chat_history.append(HumanMessage(content=user_query))
with st.chat_message("Human"):
st.markdown(user_query)
with st.chat_message("AI"):
response = answer_sql(user_query, st.session_state.db, st.session_state.chat_history)
st.markdown(response)
st.session_state.chat_history.append(AIMessage(content=response)) |