Spaces:
Sleeping
Sleeping
File size: 8,786 Bytes
c34a261 f850ef1 c34a261 f850ef1 c34a261 f850ef1 c34a261 00d3899 0c1c745 c34a261 f850ef1 c34a261 00d3899 f850ef1 00d3899 0c1c745 f850ef1 00d3899 f850ef1 0c1c745 00d3899 0c1c745 f850ef1 c34a261 f850ef1 c34a261 f850ef1 c34a261 00d3899 c34a261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import streamlit as st
from langchain import OpenAI, SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
from langchain_openai import ChatOpenAI
import os
import time
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import get_openai_callback
# Custom CSS for enhanced styling
def local_css():
st.markdown("""
<style>
.main-container {
background-color: #f0f2f6;
padding: 2rem;
border-radius: 15px;
}
.stApp {
background-color: #ffffff;
}
.stChatInput {
border-radius: 15px !important;
border: 2px solid #3366cc !important;
}
.chat-header {
background-color: #3366cc;
color: white;
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
}
.chat-message {
margin-bottom: 10px;
padding: 10px;
border-radius: 10px;
}
.human-message {
background-color: #e6f2ff;
border-left: 4px solid #3366cc;
}
.ai-message {
background-color: #f0f0f0;
border-left: 4px solid #666666;
}
.sidebar .stTextInput > div > div > input {
border-radius: 10px !important;
}
.sidebar {
background-color: #f8f9fa;
border-radius: 15px;
padding: 15px;
}
</style>
""", unsafe_allow_html=True)
def init_database(user: str, password: str, host: str, port: str, database: str, sslmode: str = None):
"""Initialize a connection to the PostgreSQL database."""
try:
db_uri = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}"
if sslmode:
db_uri += f"?sslmode={sslmode}"
db = SQLDatabase.from_uri(db_uri)
return db
except Exception as e:
st.error(f"Unable to connect to the database: {e}")
return None
def answer_sql(question: str, db, chat_history: list, llm):
"""Generate SQL answer based on the user's question and database content."""
try:
prompt = PromptTemplate(
input_variables=['input', 'table_info', 'top_k'],
template="""You are a PostgreSQL expert. Given an input question,
first create a syntactically correct PostgreSQL query to run,
then look at the results of the query and return the answer to the input question.
Unless the user specifies in the question a specific number of records to obtain, query for at most {top_k} results using the LIMIT clause as per PostgreSQL.
Wrap each column name in double quotes (") to denote them as delimited identifiers.
Only use the following tables:\n{table_info}\n\nQuestion: {input}')"""
)
db_chain = SQLDatabaseChain(
llm=llm,
database=db,
top_k=100,
verbose=True,
use_query_checker=True,
prompt=prompt,
return_intermediate_steps=True
)
with get_openai_callback() as cb:
response = db_chain.invoke({
"query": question,
"chat_history": chat_history,
})["result"]
# Optional: Log token usage (you can remove this or add logging as needed)
print(f"Total Tokens: {cb.total_tokens}")
print(f"Total Cost (USD): ${cb.total_cost}")
return response
except Exception as e:
st.error(f"An error occurred: {e}")
return "Sorry, I couldn't process your request."
def main():
# Apply custom CSS
local_css()
# Set page configuration
st.set_page_config(
page_title="PostgreSQL Query Assistant",
page_icon="π€",
layout="wide"
)
# Main container
with st.container():
# Header
st.markdown("<div class='chat-header'><h1 style='text-align: center;'>π€ PostgreSQL Query Assistant</h1></div>", unsafe_allow_html=True)
# Sidebar for connection
with st.sidebar:
st.image("https://www.postgresql.org/media/img/about/press/elephant.png", use_container_width=True)
st.header("Database Connection")
# Connection details
with st.expander("Database Credentials", expanded=True):
openai_api_key = st.text_input("OpenAI API Key", type="password", help="Required for natural language to SQL conversion")
db_type = st.radio("Database Type", ("Local", "Cloud"))
if db_type == "Local":
host = st.text_input("Host", value="localhost")
port = st.text_input("Port", value="5432")
user = st.text_input("Username", value="postgres")
password = st.text_input("Password", type="password")
database = st.text_input("Database Name", value="testing_3")
sslmode = None
else:
host = st.text_input("Host (e.g., your-db-host.aws.com)")
port = st.text_input("Port", value="5432")
user = st.text_input("Username")
password = st.text_input("Password", type="password")
database = st.text_input("Database Name")
sslmode = st.selectbox("SSL Mode", ["require", "verify-ca", "verify-full", "disable"])
connect_btn = st.button("π Connect to Database")
# Main chat area
chat_container = st.container()
# Initialize or load session state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="π Hi there! I'm your PostgreSQL Query Assistant. Connect to your database and ask me anything!")
]
if 'db_connected' not in st.session_state:
st.session_state.db_connected = False
# Connection handling
if connect_btn:
if not openai_api_key:
st.error("Please provide an OpenAI API Key")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
db = init_database(user, password, host, port, database, sslmode)
if db:
st.session_state.db = db
st.session_state.llm = llm
st.session_state.db_connected = True
st.success("π Successfully connected to the database!")
# Display chat history
with chat_container:
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("assistant", avatar="π€"):
st.markdown(f"<div class='chat-message ai-message'>{message.content}</div>", unsafe_allow_html=True)
elif isinstance(message, HumanMessage):
with st.chat_message("user", avatar="π€"):
st.markdown(f"<div class='chat-message human-message'>{message.content}</div>", unsafe_allow_html=True)
# Chat input and processing
if st.session_state.db_connected:
user_query = st.chat_input("Ask a question about your database...")
if user_query:
# Add user message to chat history
st.session_state.chat_history.append(HumanMessage(content=user_query))
# Display user message
with st.chat_message("user", avatar="π€"):
st.markdown(f"<div class='chat-message human-message'>{user_query}</div>", unsafe_allow_html=True)
# Generate and display AI response
with st.chat_message("assistant", avatar="π€"):
with st.spinner("Generating response..."):
response = answer_sql(
user_query,
st.session_state.db,
st.session_state.chat_history,
st.session_state.llm
)
st.markdown(f"<div class='chat-message ai-message'>{response}</div>", unsafe_allow_html=True)
# Add AI response to chat history
st.session_state.chat_history.append(AIMessage(content=response))
else:
st.warning("Please connect to a database to start querying.")
if __name__ == "__main__":
main() |