Spaces:
Sleeping
Sleeping
File size: 6,306 Bytes
f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 0c1c745 f850ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from langchain import OpenAI, SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
from langchain_openai import AzureChatOpenAI, ChatOpenAI
import pandas as pd
import time
from langchain_core.prompts.prompt import PromptTemplate
import re
from sqlalchemy import create_engine, text
import psycopg2
from psycopg2 import sql
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from langchain_community.callbacks import get_openai_callback
import os
os.environ["GROQ_API_KEY"] = "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"
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.25)
def init_database(user: str, password: str, host: str, port: str, database: str, sslmode: str = None) -> SQLDatabase:
try:
db_uri = f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}"
if sslmode:
db_uri += f"?sslmode={sslmode}"
# Attempt to create a database connection
db = SQLDatabase.from_uri(db_uri)
return db
except Exception as e:
st.error("Unable to connect to the database. Please check your credentials and try again.")
st.stop() # Stop further execution if an error occurs
def answer_sql(question: str, db: SQLDatabase, chat_history: list):
try:
# setup llm
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.25)
prompt = PromptTemplate(input_variables=['input', 'table_info', 'top_k'],
template="""You are a PostgreSQL expert. Given an input question,
first create a syntactically correct PostgreSQL query to run,
then look at the results of the query and return the answer to the input question.
Unless the user specifies in the question a specific number of records to obtain, query for at most {top_k} results using the LIMIT clause as per PostgreSQL.
Wrap each column name in double quotes (") to denote them as delimited identifiers.
Only use the following tables:\n{table_info}\n\nQuestion: {input}')""")
QUERY = f"""
Given an input question, look at the results of the query and return the answer in natural language to the user's question with all the records of SQLResult.
{question}
"""
db_chain = SQLDatabaseChain(
llm=llm, database=db, top_k=100, verbose=True, use_query_checker=True, prompt=prompt, return_intermediate_steps=True
)
with get_openai_callback() as cb:
response = db_chain.invoke({
"query": QUERY.format(question=question),
"chat_history": chat_history,
})["result"]
print("*" * 55)
print(f"Total Tokens : {cb.total_tokens}")
print(f"Prompt Tokens : {cb.prompt_tokens}")
print(f"Completion Tokens : {cb.completion_tokens}")
print(f"Total Cost (USD) : ${cb.total_cost}")
print("*" * 55)
return response
except Exception as e:
st.error("A technical error occurred. Please try again later.")
st.stop()
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="Hello! I'm your SQL assistant. Ask me anything about your database."),
]
st.set_page_config(page_title="Chat with Postgres", page_icon=":speech_balloon:")
st.title("Chat with Postgres DB")
st.sidebar.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSfbBOY1t6ZMwLejpwbGVQ9p3LKplwt45yxEzeDsEEPibRm4JqIYF3xav53PNRLJwWkdw&usqp=CAU", use_container_width=True)
# Step 1: Prompt user to select database type (local or cloud)
with st.sidebar:
st.subheader("Database Setup")
db_type = st.radio("Is your PostgreSQL database on a local server or in the cloud?", ("Local", "Cloud"))
if db_type == "Local":
st.write("Enter your local database credentials.")
host = st.text_input("Host", value="localhost")
port = st.text_input("Port", value="5432")
user = st.text_input("User", value="postgres")
password = st.text_input("Password", type="password")
database = st.text_input("Database", value="testing_3")
# Connect Button
if st.button("Connect"):
with st.spinner("Connecting to the local database..."):
db = init_database(user, password, host, port, database)
st.session_state.db = db
st.success("Connected to local database!")
elif db_type == "Cloud":
st.write("Enter your cloud database credentials.")
host = st.text_input("Host (e.g., your-db-host.aws.com)")
port = st.text_input("Port (default: 5432)", value="5432")
user = st.text_input("User")
password = st.text_input("Password", type="password")
database = st.text_input("Database")
sslmode = st.selectbox("SSL Mode", ["require", "verify-ca", "verify-full", "disable"])
# Connect Button
if st.button("Connect"):
with st.spinner("Connecting to the cloud database..."):
db = init_database(user, password, host, port, database, sslmode)
st.session_state.db = db
st.success("Connected to cloud database!")
# Main chat interface
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.markdown(message.content)
user_query = st.chat_input("Type a message...")
if user_query:
st.session_state.chat_history.append(HumanMessage(content=user_query))
with st.chat_message("Human"):
st.markdown(user_query)
with st.chat_message("AI"):
response = answer_sql(user_query, st.session_state.db, st.session_state.chat_history)
st.markdown(response)
st.session_state.chat_history.append(AIMessage(content=response)) |