Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
|
|
4 |
from htmlTemplate import css, bot_template, user_template
|
5 |
import PyPDF2
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -71,7 +72,9 @@ def get_text_chunks(content, metadata):
|
|
71 |
def ingest_into_vectordb(split_docs):
|
72 |
# embeddings = OpenAIEmbeddings()
|
73 |
# embeddings = FastEmbedEmbeddings()
|
74 |
-
embeddings = SpacyEmbeddings(model_name="en_core_web_sm")
|
|
|
|
|
75 |
db = FAISS.from_documents(split_docs, embeddings)
|
76 |
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
77 |
db.save_local(DB_FAISS_PATH)
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from htmlTemplate import css, bot_template, user_template
|
6 |
import PyPDF2
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
72 |
def ingest_into_vectordb(split_docs):
|
73 |
# embeddings = OpenAIEmbeddings()
|
74 |
# embeddings = FastEmbedEmbeddings()
|
75 |
+
# embeddings = SpacyEmbeddings(model_name="en_core_web_sm")
|
76 |
+
embeddings=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
|
77 |
+
model_kwargs={'device':'cpu'})
|
78 |
db = FAISS.from_documents(split_docs, embeddings)
|
79 |
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
80 |
db.save_local(DB_FAISS_PATH)
|