Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,176 +1,74 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
-
import os
|
| 4 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
-
from htmlTemplate import css, bot_template, user_template
|
| 6 |
-
import PyPDF2
|
| 7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
|
| 9 |
-
from langchain_community.llms import LlamaCpp
|
| 10 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
-
from langchain.vectorstores import FAISS
|
| 12 |
-
from langchain.memory import ConversationBufferMemory
|
| 13 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 14 |
-
from langchain.prompts import PromptTemplate
|
| 15 |
-
from sentence_transformers import SentenceTransformer, util
|
| 16 |
-
#from langchain_openai import AzureOpenAIEmbeddings
|
| 17 |
-
#from langchain_openai import OpenAIEmbeddings
|
| 18 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
| 19 |
-
#from langchain_openai import ChatOpenAI
|
| 20 |
-
os.environ["OPENAI_API_KEY"] = "sk-.............."
|
| 21 |
-
|
| 22 |
-
import os
|
| 23 |
-
os.environ["GROQ_API_KEY"]=os.getenv('GROQ_API_KEY')
|
| 24 |
-
from langchain_groq import ChatGroq
|
| 25 |
-
|
| 26 |
-
llmtemplate = """You’re an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity.
|
| 27 |
-
|
| 28 |
-
Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address:
|
| 29 |
-
{question}
|
| 30 |
-
|
| 31 |
-
Keep in mind the following instructions:
|
| 32 |
-
- Your response should be direct and factual, limited to 50 words and 2-3 sentences.
|
| 33 |
-
- Avoid using introductory phrases like "yes" or "no."
|
| 34 |
-
- Maintain an ethical and unbiased tone, steering clear of harmful or offensive content.
|
| 35 |
-
- If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document."
|
| 36 |
-
- Do not fabricate information, include questions, or use confirmatory phrases.
|
| 37 |
-
- Remember not to prompt for additional information or ask any questions.
|
| 38 |
-
|
| 39 |
-
Ensure your response is strictly based on the content of the markdown document.
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def prepare_docs(pdf_docs):
|
| 45 |
-
docs = []
|
| 46 |
-
metadata = []
|
| 47 |
-
content = []
|
| 48 |
-
|
| 49 |
-
for pdf in pdf_docs:
|
| 50 |
-
print(pdf.name)
|
| 51 |
-
pdf_reader = PyPDF2.PdfReader(pdf)
|
| 52 |
-
for index, text in enumerate(pdf_reader.pages):
|
| 53 |
-
doc_page = {'title': pdf.name + " page " + str(index + 1),
|
| 54 |
-
'content': pdf_reader.pages[index].extract_text()}
|
| 55 |
-
docs.append(doc_page)
|
| 56 |
-
for doc in docs:
|
| 57 |
-
content.append(doc["content"])
|
| 58 |
-
metadata.append({
|
| 59 |
-
"title": doc["title"]
|
| 60 |
-
})
|
| 61 |
-
return content, metadata
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
def get_text_chunks(content, metadata):
|
| 65 |
-
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
| 66 |
-
chunk_size=1024,
|
| 67 |
-
chunk_overlap=256,
|
| 68 |
-
)
|
| 69 |
-
split_docs = text_splitter.create_documents(content, metadatas=metadata)
|
| 70 |
-
print(f"Split documents into {len(split_docs)} passages")
|
| 71 |
-
return split_docs
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def ingest_into_vectordb(split_docs):
|
| 75 |
-
# embeddings = OpenAIEmbeddings()
|
| 76 |
-
# embeddings = FastEmbedEmbeddings()
|
| 77 |
-
# embeddings = SpacyEmbeddings(model_name="en_core_web_sm")
|
| 78 |
-
embeddings=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 79 |
-
model_kwargs={'device':'cpu'})
|
| 80 |
-
db = FAISS.from_documents(split_docs, embeddings)
|
| 81 |
-
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 82 |
-
db.save_local(DB_FAISS_PATH)
|
| 83 |
-
return db
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def get_conversation_chain(vectordb):
|
| 87 |
-
# llama_llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
|
| 88 |
-
llm = ChatGroq(model="llama3-70b-8192", temperature=0.25)
|
| 89 |
-
retriever = vectordb.as_retriever()
|
| 90 |
-
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(llmtemplate)
|
| 91 |
-
|
| 92 |
-
memory = ConversationBufferMemory(
|
| 93 |
-
memory_key='chat_history', return_messages=True, output_key='answer')
|
| 94 |
-
|
| 95 |
-
conversation_chain = (ConversationalRetrievalChain.from_llm
|
| 96 |
-
(llm=llm,
|
| 97 |
-
retriever=retriever,
|
| 98 |
-
#condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
| 99 |
-
memory=memory,
|
| 100 |
-
return_source_documents=True))
|
| 101 |
-
print("Conversational Chain created for the LLM using the vector store")
|
| 102 |
-
return conversation_chain
|
| 103 |
-
|
| 104 |
-
def validate_answer_against_sources(response_answer, source_documents):
|
| 105 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 106 |
-
similarity_threshold = 0.5
|
| 107 |
-
source_texts = [doc.page_content for doc in source_documents]
|
| 108 |
-
|
| 109 |
-
answer_embedding = model.encode(response_answer, convert_to_tensor=True)
|
| 110 |
-
source_embeddings = model.encode(source_texts, convert_to_tensor=True)
|
| 111 |
-
|
| 112 |
-
cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings)
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
if any(score.item() > similarity_threshold for score in cosine_scores[0]):
|
| 116 |
-
return True
|
| 117 |
-
|
| 118 |
-
return False
|
| 119 |
-
|
| 120 |
-
def handle_userinput(user_question):
|
| 121 |
-
response = st.session_state.conversation({'question': user_question})
|
| 122 |
-
st.session_state.chat_history = response['chat_history']
|
| 123 |
-
|
| 124 |
-
for i, message in enumerate(st.session_state.chat_history):
|
| 125 |
-
print(i)
|
| 126 |
-
if i % 2 == 0:
|
| 127 |
-
st.write(user_template.replace(
|
| 128 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
| 129 |
-
else:
|
| 130 |
-
print(message.content)
|
| 131 |
-
st.write(bot_template.replace(
|
| 132 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
def main():
|
| 137 |
load_dotenv()
|
| 138 |
|
| 139 |
-
st.set_page_config(
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
| 141 |
st.write(css, unsafe_allow_html=True)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
if "conversation" not in st.session_state:
|
| 144 |
st.session_state.conversation = None
|
| 145 |
if "chat_history" not in st.session_state:
|
| 146 |
st.session_state.chat_history = []
|
| 147 |
|
| 148 |
-
|
| 149 |
-
user_question = st.text_input("Ask a question about your documents:")
|
| 150 |
-
|
| 151 |
-
if user_question:
|
| 152 |
-
handle_userinput(user_question)
|
| 153 |
-
|
| 154 |
with st.sidebar:
|
| 155 |
-
st.
|
| 156 |
pdf_docs = st.file_uploader(
|
| 157 |
-
"Upload your PDFs here
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
if
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
def main():
|
| 2 |
load_dotenv()
|
| 3 |
|
| 4 |
+
st.set_page_config(
|
| 5 |
+
page_title="PDF Insights AI",
|
| 6 |
+
page_icon=":books:",
|
| 7 |
+
layout="wide"
|
| 8 |
+
)
|
| 9 |
st.write(css, unsafe_allow_html=True)
|
| 10 |
|
| 11 |
+
# Welcome section
|
| 12 |
+
st.title("📚 PDF Insights AI")
|
| 13 |
+
st.markdown("""
|
| 14 |
+
### Unlock the Knowledge in Your PDFs
|
| 15 |
+
- 🤖 AI-powered document analysis
|
| 16 |
+
- 💬 Ask questions about your uploaded documents
|
| 17 |
+
- 📄 Support for multiple PDF files
|
| 18 |
+
""")
|
| 19 |
+
|
| 20 |
if "conversation" not in st.session_state:
|
| 21 |
st.session_state.conversation = None
|
| 22 |
if "chat_history" not in st.session_state:
|
| 23 |
st.session_state.chat_history = []
|
| 24 |
|
| 25 |
+
# File upload section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
with st.sidebar:
|
| 27 |
+
st.header("📤 Upload Documents")
|
| 28 |
pdf_docs = st.file_uploader(
|
| 29 |
+
"Upload your PDFs here",
|
| 30 |
+
type=['pdf'],
|
| 31 |
+
accept_multiple_files=True,
|
| 32 |
+
help="Upload PDF files to analyze. Max file size: 200MB"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# File validation
|
| 36 |
+
if pdf_docs:
|
| 37 |
+
for doc in pdf_docs:
|
| 38 |
+
if doc.size > 200 * 1024 * 1024: # 200 MB
|
| 39 |
+
st.error(f"File {doc.name} is too large. Maximum file size is 200MB.")
|
| 40 |
+
pdf_docs.remove(doc)
|
| 41 |
+
|
| 42 |
+
if st.button("Process Documents", type="primary"):
|
| 43 |
+
if not pdf_docs:
|
| 44 |
+
st.warning("Please upload at least one PDF file.")
|
| 45 |
+
else:
|
| 46 |
+
with st.spinner("Processing your documents..."):
|
| 47 |
+
try:
|
| 48 |
+
# get pdf text
|
| 49 |
+
content, metadata = prepare_docs(pdf_docs)
|
| 50 |
+
|
| 51 |
+
# get the text chunks
|
| 52 |
+
split_docs = get_text_chunks(content, metadata)
|
| 53 |
+
|
| 54 |
+
# create vector store
|
| 55 |
+
vectorstore = ingest_into_vectordb(split_docs)
|
| 56 |
+
|
| 57 |
+
# create conversation chain
|
| 58 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
| 59 |
+
|
| 60 |
+
st.success("Documents processed successfully! You can now ask questions.")
|
| 61 |
+
except Exception as e:
|
| 62 |
+
st.error(f"An error occurred while processing documents: {str(e)}")
|
| 63 |
+
|
| 64 |
+
# Question input section
|
| 65 |
+
user_question = st.text_input(
|
| 66 |
+
"📝 Ask a question about your documents",
|
| 67 |
+
placeholder="What insights can you provide from these documents?"
|
| 68 |
+
)
|
| 69 |
|
| 70 |
+
if user_question:
|
| 71 |
+
if st.session_state.conversation is None:
|
| 72 |
+
st.warning("Please upload and process documents first.")
|
| 73 |
+
else:
|
| 74 |
+
handle_userinput(user_question)
|