import streamlit as st from dotenv import load_dotenv import os from htmlTemplate import css, bot_template, user_template import PyPDF2 from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings from langchain_community.llms import LlamaCpp from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.prompts import PromptTemplate from sentence_transformers import SentenceTransformer, util from langchain_openai import AzureOpenAIEmbeddings from langchain_openai import OpenAIEmbeddings from langchain_community.embeddings.fastembed import FastEmbedEmbeddings from langchain_openai import ChatOpenAI os.environ["GROQ_API_KEY"]=os.getenv('GROQ_API_KEY') from langchain_groq import ChatGroq llmtemplate = """You’re an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity. Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address: {question} Keep in mind the following instructions: - Your response should be direct and factual, limited to 50 words and 2-3 sentences. - Avoid using introductory phrases like "yes" or "no." - Maintain an ethical and unbiased tone, steering clear of harmful or offensive content. - If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document." - Do not fabricate information, include questions, or use confirmatory phrases. - Remember not to prompt for additional information or ask any questions. Ensure your response is strictly based on the content of the markdown document. """ def prepare_docs(pdf_docs): docs = [] metadata = [] content = [] for pdf in pdf_docs: print(pdf.name) pdf_reader = PyPDF2.PdfReader(pdf) for index, text in enumerate(pdf_reader.pages): doc_page = {'title': pdf.name + " page " + str(index + 1), 'content': pdf_reader.pages[index].extract_text()} docs.append(doc_page) for doc in docs: content.append(doc["content"]) metadata.append({ "title": doc["title"] }) return content, metadata def get_text_chunks(content, metadata): text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=1024, chunk_overlap=256, ) split_docs = text_splitter.create_documents(content, metadatas=metadata) print(f"Split documents into {len(split_docs)} passages") return split_docs def ingest_into_vectordb(split_docs): # embeddings = OpenAIEmbeddings() # embeddings = FastEmbedEmbeddings() embeddings = SpacyEmbeddings(model_name="en_core_web_sm") db = FAISS.from_documents(split_docs, embeddings) DB_FAISS_PATH = 'vectorstore/db_faiss' db.save_local(DB_FAISS_PATH) return db def get_conversation_chain(vectordb): # llama_llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo") llm = ChatGroq(model="llama3-70b-8192", temperature=0.25) retriever = vectordb.as_retriever() CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(llmtemplate) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True, output_key='answer') conversation_chain = (ConversationalRetrievalChain.from_llm (llm=llm, retriever=retriever, #condense_question_prompt=CONDENSE_QUESTION_PROMPT, memory=memory, return_source_documents=True)) print("Conversational Chain created for the LLM using the vector store") return conversation_chain def validate_answer_against_sources(response_answer, source_documents): model = SentenceTransformer('all-MiniLM-L6-v2') similarity_threshold = 0.5 source_texts = [doc.page_content for doc in source_documents] answer_embedding = model.encode(response_answer, convert_to_tensor=True) source_embeddings = model.encode(source_texts, convert_to_tensor=True) cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings) if any(score.item() > similarity_threshold for score in cosine_scores[0]): return True return False def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): print(i) if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: print(message.content) st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with your PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = [] st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text content, metadata = prepare_docs(pdf_docs) # get the text chunks split_docs = get_text_chunks(content, metadata) # create vector store vectorstore = ingest_into_vectordb(split_docs) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) if __name__ == '__main__': main()