Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,134 @@
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
-
|
|
|
|
|
5 |
import PyPDF2
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from
|
8 |
-
|
9 |
-
|
|
|
10 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
-
from sentence_transformers import SentenceTransformer, util
|
15 |
-
from langchain_openai import AzureOpenAIEmbeddings
|
16 |
-
from langchain_openai import OpenAIEmbeddings
|
17 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
18 |
-
from langchain_openai import ChatOpenAI
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def main():
|
|
|
23 |
load_dotenv()
|
24 |
|
25 |
st.set_page_config(
|
@@ -28,7 +137,6 @@ def main():
|
|
28 |
layout="wide"
|
29 |
)
|
30 |
st.write(css, unsafe_allow_html=True)
|
31 |
-
|
32 |
|
33 |
# Welcome section
|
34 |
st.title("📚 PDF Insights AI")
|
@@ -39,6 +147,7 @@ def main():
|
|
39 |
- 📄 Support for multiple PDF files
|
40 |
""")
|
41 |
|
|
|
42 |
if "conversation" not in st.session_state:
|
43 |
st.session_state.conversation = None
|
44 |
if "chat_history" not in st.session_state:
|
@@ -67,16 +176,10 @@ def main():
|
|
67 |
else:
|
68 |
with st.spinner("Processing your documents..."):
|
69 |
try:
|
70 |
-
#
|
71 |
content, metadata = prepare_docs(pdf_docs)
|
72 |
-
|
73 |
-
# get the text chunks
|
74 |
split_docs = get_text_chunks(content, metadata)
|
75 |
-
|
76 |
-
# create vector store
|
77 |
vectorstore = ingest_into_vectordb(split_docs)
|
78 |
-
|
79 |
-
# create conversation chain
|
80 |
st.session_state.conversation = get_conversation_chain(vectorstore)
|
81 |
|
82 |
st.success("Documents processed successfully! You can now ask questions.")
|
@@ -93,4 +196,7 @@ def main():
|
|
93 |
if st.session_state.conversation is None:
|
94 |
st.warning("Please upload and process documents first.")
|
95 |
else:
|
96 |
-
handle_userinput(user_question)
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
+
import traceback
|
5 |
+
|
6 |
+
# PDF and NLP Libraries
|
7 |
import PyPDF2
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from sentence_transformers import SentenceTransformer, util
|
10 |
+
|
11 |
+
# Embedding and Vector Store
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain.vectorstores import FAISS
|
14 |
+
|
15 |
+
# LLM and Conversational Chain
|
16 |
+
from langchain_groq import ChatGroq
|
17 |
from langchain.memory import ConversationBufferMemory
|
18 |
from langchain.chains import ConversationalRetrievalChain
|
19 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Custom Templates
|
22 |
+
from htmlTemplate import css, bot_template, user_template
|
23 |
+
|
24 |
+
# Load environment variables
|
25 |
+
os.environ["GROQ_API_KEY"]= "sss"
|
26 |
+
|
27 |
+
# LLM Template for focused responses
|
28 |
+
llmtemplate = """You're an AI information specialist with a strong emphasis on extracting accurate information from markdown documents. Your expertise involves summarizing data succinctly while adhering to strict guidelines about neutrality and clarity.
|
29 |
+
Your task is to answer a specific question based on a provided markdown document. Here is the question you need to address:
|
30 |
+
{question}
|
31 |
+
Keep in mind the following instructions:
|
32 |
+
- Your response should be direct and factual, limited to 50 words and 2-3 sentences.
|
33 |
+
- Avoid using introductory phrases like "yes" or "no."
|
34 |
+
- Maintain an ethical and unbiased tone, steering clear of harmful or offensive content.
|
35 |
+
- If the document lacks relevant information, respond with "I cannot provide an answer based on the provided document."
|
36 |
+
- Do not fabricate information, include questions, or use confirmatory phrases.
|
37 |
+
- Remember not to prompt for additional information or ask any questions.
|
38 |
+
Ensure your response is strictly based on the content of the markdown document.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def prepare_docs(pdf_docs):
|
42 |
+
"""Extract text from uploaded PDF documents"""
|
43 |
+
docs = []
|
44 |
+
metadata = []
|
45 |
+
content = []
|
46 |
+
|
47 |
+
for pdf in pdf_docs:
|
48 |
+
pdf_reader = PyPDF2.PdfReader(pdf)
|
49 |
+
for index, text in enumerate(pdf_reader.pages):
|
50 |
+
doc_page = {
|
51 |
+
'title': f"{pdf.name} page {index + 1}",
|
52 |
+
'content': pdf_reader.pages[index].extract_text()
|
53 |
+
}
|
54 |
+
docs.append(doc_page)
|
55 |
+
|
56 |
+
for doc in docs:
|
57 |
+
content.append(doc["content"])
|
58 |
+
metadata.append({"title": doc["title"]})
|
59 |
+
|
60 |
+
return content, metadata
|
61 |
+
|
62 |
+
def get_text_chunks(content, metadata):
|
63 |
+
"""Split documents into manageable chunks"""
|
64 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
65 |
+
chunk_size=1024,
|
66 |
+
chunk_overlap=256,
|
67 |
+
)
|
68 |
+
split_docs = text_splitter.create_documents(content, metadatas=metadata)
|
69 |
+
print(f"Split documents into {len(split_docs)} passages")
|
70 |
+
return split_docs
|
71 |
+
|
72 |
+
def ingest_into_vectordb(split_docs):
|
73 |
+
"""Create vector embeddings and store in FAISS"""
|
74 |
+
embeddings = HuggingFaceEmbeddings(
|
75 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
76 |
+
model_kwargs={'device':'cpu'}
|
77 |
+
)
|
78 |
+
db = FAISS.from_documents(split_docs, embeddings)
|
79 |
+
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
80 |
+
db.save_local(DB_FAISS_PATH)
|
81 |
+
return db
|
82 |
+
|
83 |
+
def get_conversation_chain(vectordb):
|
84 |
+
"""Create conversational retrieval chain"""
|
85 |
+
llm = ChatGroq(model="llama3-70b-8192", temperature=0.25)
|
86 |
+
retriever = vectordb.as_retriever()
|
87 |
+
|
88 |
+
memory = ConversationBufferMemory(
|
89 |
+
memory_key='chat_history',
|
90 |
+
return_messages=True,
|
91 |
+
output_key='answer'
|
92 |
+
)
|
93 |
+
|
94 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
95 |
+
llm=llm,
|
96 |
+
retriever=retriever,
|
97 |
+
memory=memory,
|
98 |
+
return_source_documents=True
|
99 |
+
)
|
100 |
+
|
101 |
+
print("Conversational Chain created for the LLM using the vector store")
|
102 |
+
return conversation_chain
|
103 |
+
|
104 |
+
def validate_answer_against_sources(response_answer, source_documents):
|
105 |
+
"""Validate AI's response against source documents"""
|
106 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
107 |
+
similarity_threshold = 0.5
|
108 |
+
source_texts = [doc.page_content for doc in source_documents]
|
109 |
+
|
110 |
+
answer_embedding = model.encode(response_answer, convert_to_tensor=True)
|
111 |
+
source_embeddings = model.encode(source_texts, convert_to_tensor=True)
|
112 |
+
|
113 |
+
cosine_scores = util.pytorch_cos_sim(answer_embedding, source_embeddings)
|
114 |
|
115 |
+
return any(score.item() > similarity_threshold for score in cosine_scores[0])
|
116 |
+
|
117 |
+
def handle_userinput(user_question):
|
118 |
+
"""Process user input and display chat history"""
|
119 |
+
response = st.session_state.conversation({'question': user_question})
|
120 |
+
st.session_state.chat_history = response['chat_history']
|
121 |
+
|
122 |
+
for i, message in enumerate(st.session_state.chat_history):
|
123 |
+
if i % 2 == 0:
|
124 |
+
st.write(user_template.replace(
|
125 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
126 |
+
else:
|
127 |
+
st.write(bot_template.replace(
|
128 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
129 |
|
130 |
def main():
|
131 |
+
"""Main Streamlit application"""
|
132 |
load_dotenv()
|
133 |
|
134 |
st.set_page_config(
|
|
|
137 |
layout="wide"
|
138 |
)
|
139 |
st.write(css, unsafe_allow_html=True)
|
|
|
140 |
|
141 |
# Welcome section
|
142 |
st.title("📚 PDF Insights AI")
|
|
|
147 |
- 📄 Support for multiple PDF files
|
148 |
""")
|
149 |
|
150 |
+
# Initialize session state
|
151 |
if "conversation" not in st.session_state:
|
152 |
st.session_state.conversation = None
|
153 |
if "chat_history" not in st.session_state:
|
|
|
176 |
else:
|
177 |
with st.spinner("Processing your documents..."):
|
178 |
try:
|
179 |
+
# Process documents
|
180 |
content, metadata = prepare_docs(pdf_docs)
|
|
|
|
|
181 |
split_docs = get_text_chunks(content, metadata)
|
|
|
|
|
182 |
vectorstore = ingest_into_vectordb(split_docs)
|
|
|
|
|
183 |
st.session_state.conversation = get_conversation_chain(vectorstore)
|
184 |
|
185 |
st.success("Documents processed successfully! You can now ask questions.")
|
|
|
196 |
if st.session_state.conversation is None:
|
197 |
st.warning("Please upload and process documents first.")
|
198 |
else:
|
199 |
+
handle_userinput(user_question)
|
200 |
+
|
201 |
+
if __name__ == '__main__':
|
202 |
+
main()
|