Spaces:
Running
Running
File size: 8,417 Bytes
3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc 5b2fcd5 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c d4a2c1e c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 3b091bc c119d0c 5b2fcd5 c119d0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import streamlit as st
from crewai import Agent, Task, Crew, Process
import os
from crewai_tools import ScrapeWebsiteTool, SerperDevTool
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from docx import Document
from io import BytesIO
import base64
# Load environment variables
load_dotenv()
# Configure API keys
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["SERPER_API_KEY"] = os.getenv("SERPER_API_KEY")
# Helper Functions
def generate_docx(result):
doc = Document()
doc.add_heading('Healthcare Diagnosis and Treatment Recommendations', 0)
# Convert result to string if it's a tuple
if isinstance(result, tuple):
result_str = '\n\n'.join(str(item) for item in result)
else:
result_str = str(result)
doc.add_paragraph(result_str)
bio = BytesIO()
doc.save(bio)
bio.seek(0)
return bio
def get_download_link(bio, filename):
b64 = base64.b64encode(bio.read()).decode()
return f'<a href="data:application/vnd.openxmlformats-officedocument.wordprocessingml.document;base64,{b64}" download="{filename}" class="download-button">Download Report</a>'
# Page Configuration
st.set_page_config(
page_title="Medical AI Assistant",
page_icon="π₯",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton > button {
width: 100%;
background-color: #007bff;
color: white;
padding: 0.5rem 1rem;
border-radius: 0.5rem;
border: none;
margin-top: 1rem;
}
.stButton > button:hover {
background-color: #0056b3;
}
.download-button {
display: inline-block;
padding: 0.5rem 1rem;
background-color: #28a745;
color: white;
text-decoration: none;
border-radius: 0.5rem;
margin-top: 1rem;
}
.download-button:hover {
background-color: #218838;
color: white;
}
.stTextInput > div > div > input {
border-radius: 0.5rem;
}
.stTextArea > div > div > textarea {
border-radius: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# Sidebar for Patient Information
with st.sidebar:
st.image("https://formaspace.com/wp-content/uploads/2024/04/ai-dr.jpeg", width=100)
st.title("Patient Information")
with st.form("patient_info"):
gender = st.selectbox('Gender', ('Male', 'Female', 'Other'))
age = st.number_input('Age', min_value=0, max_value=120, value=25)
height = st.number_input('Height (cm)', min_value=0, max_value=300, value=170)
weight = st.number_input('Weight (kg)', min_value=0, max_value=500, value=70)
submit_button = st.form_submit_button("Save Patient Info")
# Main Content
st.title("π₯ Medical AI Assistant")
st.markdown("""
<div style='background-color: #f8f9fa; padding: 1rem; border-radius: 0.5rem; margin-bottom: 2rem;'>
<h4>Welcome to the Medical AI Assistant</h4>
<p>This AI-powered system helps medical professionals with diagnosis and treatment recommendations.
Please enter the patient's symptoms and medical history below.</p>
</div>
""", unsafe_allow_html=True)
# Create tabs for different sections
tab1, tab2 = st.tabs(["π Patient Assessment", "π Results"])
with tab1:
col1, col2 = st.columns(2)
with col1:
st.subheader("Current Symptoms")
symptoms = st.text_area(
'Describe the symptoms in detail',
placeholder='e.g., persistent fever for 3 days, dry cough, fatigue',
height=200
)
with col2:
st.subheader("Medical History")
medical_history = st.text_area(
'Enter relevant medical history',
placeholder='e.g., Type 2 diabetes diagnosed in 2019, hypertension',
height=200
)
# Additional Information
with st.expander("Additional Information (Optional)"):
col3, col4 = st.columns(2)
with col3:
allergies = st.text_area("Known Allergies", placeholder="e.g., penicillin, peanuts")
current_medications = st.text_area("Current Medications", placeholder="e.g., metformin 500mg twice daily")
with col4:
family_history = st.text_area("Family History", placeholder="e.g., heart disease, diabetes")
lifestyle = st.text_area("Lifestyle Factors", placeholder="e.g., smoker, exercises 3 times a week")
# Initialize Tools and Agents
search_tool = SerperDevTool()
scrape_tool = ScrapeWebsiteTool()
llm = ChatOpenAI(
model="gpt-3.5-turbo-16k",
temperature=0.1,
max_tokens=8000
)
# Define Agents
diagnostician = Agent(
role="Medical Diagnostician",
goal="Analyze patient symptoms and medical history to provide a preliminary diagnosis.",
backstory="Expert in diagnosing medical conditions using advanced algorithms and comprehensive medical knowledge.",
verbose=True,
allow_delegation=False,
tools=[search_tool, scrape_tool],
llm=llm
)
treatment_advisor = Agent(
role="Treatment Advisor",
goal="Recommend appropriate treatment plans based on the diagnosis.",
backstory="Specialist in creating personalized treatment plans considering patient history and current medical best practices.",
verbose=True,
allow_delegation=False,
tools=[search_tool, scrape_tool],
llm=llm
)
# Define Tasks
diagnose_task = Task(
description=(
f"1. Analyze the patient's symptoms ({symptoms}) and medical history ({medical_history}).\n"
f"2. Consider additional factors: Age: {age}, Gender: {gender}\n"
"3. Provide a preliminary diagnosis with possible conditions.\n"
"4. List the most likely conditions in order of probability."
),
expected_output="A detailed preliminary diagnosis with ranked possible conditions.",
agent=diagnostician
)
treatment_task = Task(
description=(
"1. Based on the diagnosis, create a comprehensive treatment plan.\n"
f"2. Consider patient profile: Age: {age}, Gender: {gender}\n"
f"3. Account for medical history: {medical_history}\n"
"4. Provide detailed recommendations including:\n"
" - Medications and dosages\n"
" - Lifestyle modifications\n"
" - Follow-up care schedule\n"
" - Warning signs to watch for"
),
expected_output="A comprehensive, personalized treatment plan.",
agent=treatment_advisor
)
# Create Crew
crew = Crew(
agents=[diagnostician, treatment_advisor],
tasks=[diagnose_task, treatment_task],
verbose=True
)
# Analysis Button
if st.button("Generate Analysis"):
if not symptoms or not medical_history:
st.error("Please provide both symptoms and medical history before generating analysis.")
else:
with tab2:
with st.status("π Processing..."):
st.write("Analyzing patient data...")
st.write("Generating diagnosis...")
st.write("Creating treatment plan...")
result = crew.kickoff(inputs={
"symptoms": symptoms,
"medical_history": medical_history
})
st.success("Analysis Complete!")
# Display Results
st.markdown("### π Analysis Results")
if isinstance(result, tuple):
for item in result:
st.markdown(str(item))
st.markdown("---") # Add a separator between items
else:
st.markdown(str(result))
# Generate and offer download
docx_file = generate_docx(result)
download_link = get_download_link(docx_file, "medical_analysis_report.docx")
st.markdown("### π₯ Download Report")
st.markdown(download_link, unsafe_allow_html=True)
# Additional recommendations
st.markdown("### β‘ Next Steps")
st.info("""
1. Review the generated report in detail
2. Consider additional specialist consultations if needed
3. Schedule necessary follow-up appointments
4. Monitor patient progress and adjust treatment as needed
""") |