Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from langchain_core.prompts import PromptTemplate
|
5 |
+
import json
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
import evaluate
|
8 |
+
from typing import List, Dict
|
9 |
+
from prompts_v1 import *
|
10 |
+
import tempfile
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
|
13 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
14 |
+
os.environ["GROQ_API_KEY"]="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"
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
# Configure page settings
|
19 |
+
st.set_page_config(
|
20 |
+
page_title="RAG Evaluator",
|
21 |
+
page_icon="📊",
|
22 |
+
layout="wide",
|
23 |
+
initial_sidebar_state="expanded"
|
24 |
+
)
|
25 |
+
|
26 |
+
# Custom CSS for better UI
|
27 |
+
st.markdown("""
|
28 |
+
<style>
|
29 |
+
.stApp {
|
30 |
+
max-width: 1200px;
|
31 |
+
margin: 0 auto;
|
32 |
+
}
|
33 |
+
.metric-box {
|
34 |
+
background-color: #f0f2f6;
|
35 |
+
border-radius: 10px;
|
36 |
+
padding: 20px;
|
37 |
+
margin: 10px 0;
|
38 |
+
}
|
39 |
+
</style>
|
40 |
+
""", unsafe_allow_html=True)
|
41 |
+
|
42 |
+
# Initialize session state
|
43 |
+
if 'evaluation_results' not in st.session_state:
|
44 |
+
st.session_state.evaluation_results = None
|
45 |
+
|
46 |
+
class RAGEvaluator:
|
47 |
+
def __init__(self):
|
48 |
+
#self.llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.2)
|
49 |
+
self.llm = ChatOpenAI(temperature=0.7, model="gpt-3.5-turbo")
|
50 |
+
self.eval_prompts = {
|
51 |
+
"diversity_metrics": diversity_metrics,
|
52 |
+
"creativity_metric": creativity_metric,
|
53 |
+
"groundedness_metric": groundedness_metric,
|
54 |
+
"coherence_metric": coherence_metric,
|
55 |
+
"pointwise_metric":pointwise_metric,
|
56 |
+
# "pairwise_metric":pairwise_metric
|
57 |
+
}
|
58 |
+
|
59 |
+
def evaluate_custom_metrics(self, df: pd.DataFrame, selected_metrics: List[str]) -> pd.DataFrame:
|
60 |
+
for metric in selected_metrics:
|
61 |
+
prompt = self.eval_prompts.get(metric)
|
62 |
+
if not prompt:
|
63 |
+
continue
|
64 |
+
|
65 |
+
review_template = PromptTemplate.from_template(prompt)
|
66 |
+
eval_score = []
|
67 |
+
explanation = []
|
68 |
+
|
69 |
+
progress_bar = st.progress(0)
|
70 |
+
for idx in range(len(df)):
|
71 |
+
progress = (idx + 1) / len(df)
|
72 |
+
progress_bar.progress(progress)
|
73 |
+
|
74 |
+
question = df["question"][idx]
|
75 |
+
answer = df["answer"][idx]
|
76 |
+
context = df["context"][idx]
|
77 |
+
|
78 |
+
final_prompt = review_template.format(
|
79 |
+
question=question,
|
80 |
+
answer=answer,
|
81 |
+
context=context
|
82 |
+
)
|
83 |
+
|
84 |
+
response = self.llm.invoke(final_prompt).content
|
85 |
+
data_dict = json.loads(response)
|
86 |
+
|
87 |
+
eval_score.append(data_dict["eval_score"])
|
88 |
+
explanation.append(data_dict["explanation"])
|
89 |
+
|
90 |
+
df[f"{metric}_score"] = eval_score
|
91 |
+
df[f"{metric}_explanation"] = explanation
|
92 |
+
progress_bar.empty()
|
93 |
+
|
94 |
+
return df
|
95 |
+
|
96 |
+
def evaluate_traditional_metrics(self, df: pd.DataFrame, selected_metrics: List[str]) -> pd.DataFrame:
|
97 |
+
if "BLEU" in selected_metrics:
|
98 |
+
bleu = evaluate.load('bleu')
|
99 |
+
scores = []
|
100 |
+
for _, row in df.iterrows():
|
101 |
+
score = bleu.compute(
|
102 |
+
predictions=[row['answer']],
|
103 |
+
references=[row['context']],
|
104 |
+
max_order=2
|
105 |
+
)
|
106 |
+
scores.append(score['bleu'])
|
107 |
+
df['bleu_score'] = scores
|
108 |
+
|
109 |
+
if "ROUGE" in selected_metrics:
|
110 |
+
rouge = evaluate.load("rouge")
|
111 |
+
rouge1_scores = []
|
112 |
+
rouge2_scores = []
|
113 |
+
rougeL_scores = []
|
114 |
+
|
115 |
+
for _, row in df.iterrows():
|
116 |
+
scores = rouge.compute(
|
117 |
+
predictions=[row['answer']],
|
118 |
+
references=[row['context']],
|
119 |
+
rouge_types=['rouge1', 'rouge2', 'rougeL']
|
120 |
+
)
|
121 |
+
rouge1_scores.append(scores['rouge1'])
|
122 |
+
rouge2_scores.append(scores['rouge2'])
|
123 |
+
rougeL_scores.append(scores['rougeL'])
|
124 |
+
|
125 |
+
df['rouge1_score'] = rouge1_scores
|
126 |
+
df['rouge2_score'] = rouge2_scores
|
127 |
+
df['rougeL_score'] = rougeL_scores
|
128 |
+
|
129 |
+
if "Perplexity" in selected_metrics:
|
130 |
+
try:
|
131 |
+
perplexity = evaluate.load("perplexity", module_type="metric")
|
132 |
+
scores = []
|
133 |
+
for _, row in df.iterrows():
|
134 |
+
try:
|
135 |
+
score = perplexity.compute(
|
136 |
+
model_id="gpt2",
|
137 |
+
add_start_token=False,
|
138 |
+
predictions=[row['answer']]
|
139 |
+
)
|
140 |
+
scores.append(score['mean_perplexity'])
|
141 |
+
except KeyError:
|
142 |
+
# If mean_perplexity is not available, try perplexity
|
143 |
+
scores.append(score.get('perplexity', 0))
|
144 |
+
except Exception as e:
|
145 |
+
st.warning(f"Skipping perplexity calculation for one row due to: {str(e)}")
|
146 |
+
scores.append(0)
|
147 |
+
df['perplexity_score'] = scores
|
148 |
+
except Exception as e:
|
149 |
+
st.error(f"Error calculating perplexity: {str(e)}")
|
150 |
+
df['perplexity_score'] = [0] * len(df)
|
151 |
+
|
152 |
+
return df
|
153 |
+
|
154 |
+
def main():
|
155 |
+
st.title("🎯 RAG Evaluator")
|
156 |
+
st.write("Upload your data and select evaluation metrics to analyze your RAG system's performance.")
|
157 |
+
|
158 |
+
# Sidebar configuration
|
159 |
+
st.sidebar.header("Configuration")
|
160 |
+
|
161 |
+
# File upload
|
162 |
+
uploaded_file = st.sidebar.file_uploader(
|
163 |
+
"Upload your evaluation data (CSV/Excel)",
|
164 |
+
type=['csv', 'xlsx']
|
165 |
+
)
|
166 |
+
|
167 |
+
# Metric selection
|
168 |
+
st.sidebar.subheader("Select Evaluation Metrics")
|
169 |
+
|
170 |
+
custom_metrics = st.sidebar.expander("Custom Metrics", expanded=True)
|
171 |
+
selected_custom_metrics = custom_metrics.multiselect(
|
172 |
+
"Choose custom metrics:",
|
173 |
+
["diversity_metrics", "creativity_metric", "groundedness_metric", "coherence_metric","pointwise_metric"],
|
174 |
+
default=["coherence_metric"]
|
175 |
+
)
|
176 |
+
|
177 |
+
traditional_metrics = st.sidebar.expander("Traditional Metrics", expanded=True)
|
178 |
+
selected_traditional_metrics = traditional_metrics.multiselect(
|
179 |
+
"Choose traditional metrics:",
|
180 |
+
["BLEU", "ROUGE", "Perplexity"],
|
181 |
+
default=["BLEU"]
|
182 |
+
)
|
183 |
+
|
184 |
+
if uploaded_file is not None:
|
185 |
+
try:
|
186 |
+
# Read the uploaded file
|
187 |
+
if uploaded_file.name.endswith('.csv'):
|
188 |
+
df = pd.read_csv(uploaded_file)
|
189 |
+
else:
|
190 |
+
df = pd.read_excel(uploaded_file)
|
191 |
+
|
192 |
+
# Display data preview
|
193 |
+
st.subheader("📊 Data Preview")
|
194 |
+
st.dataframe(df.head(), use_container_width=True)
|
195 |
+
|
196 |
+
# Initialize evaluator
|
197 |
+
evaluator = RAGEvaluator()
|
198 |
+
|
199 |
+
# Evaluation button
|
200 |
+
if st.button("🚀 Start Evaluation", type="primary"):
|
201 |
+
with st.spinner("Evaluating..."):
|
202 |
+
# Perform evaluations
|
203 |
+
if selected_custom_metrics:
|
204 |
+
df = evaluator.evaluate_custom_metrics(df, selected_custom_metrics)
|
205 |
+
|
206 |
+
if selected_traditional_metrics:
|
207 |
+
df = evaluator.evaluate_traditional_metrics(df, selected_traditional_metrics)
|
208 |
+
|
209 |
+
st.session_state.evaluation_results = df
|
210 |
+
|
211 |
+
# Save results
|
212 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
213 |
+
df.to_excel(tmp.name, index=False)
|
214 |
+
st.download_button(
|
215 |
+
label="📥 Download Results",
|
216 |
+
data=open(tmp.name, 'rb'),
|
217 |
+
file_name="rag_evaluation_results.xlsx",
|
218 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
219 |
+
)
|
220 |
+
|
221 |
+
# Display results if available
|
222 |
+
if st.session_state.evaluation_results is not None:
|
223 |
+
st.subheader("📈 Evaluation Results")
|
224 |
+
|
225 |
+
# Create tabs for different result views
|
226 |
+
tab1, tab2 = st.tabs(["📊 Metrics Overview", "📝 Detailed Results"])
|
227 |
+
|
228 |
+
with tab1:
|
229 |
+
# Display metric summaries
|
230 |
+
cols = st.columns(len(selected_custom_metrics) + len(selected_traditional_metrics))
|
231 |
+
|
232 |
+
metric_idx = 0
|
233 |
+
for metric in selected_custom_metrics:
|
234 |
+
with cols[metric_idx]:
|
235 |
+
avg_score = st.session_state.evaluation_results[f"{metric}_score"].mean()
|
236 |
+
st.metric(
|
237 |
+
label=metric.replace('_', ' ').title(),
|
238 |
+
value=f"{avg_score:.2f}"
|
239 |
+
)
|
240 |
+
metric_idx += 1
|
241 |
+
|
242 |
+
if "BLEU" in selected_traditional_metrics:
|
243 |
+
with cols[metric_idx]:
|
244 |
+
avg_bleu = st.session_state.evaluation_results['bleu_score'].mean()
|
245 |
+
st.metric(label="BLEU Score", value=f"{avg_bleu:.2f}")
|
246 |
+
metric_idx += 1
|
247 |
+
|
248 |
+
if "ROUGE" in selected_traditional_metrics:
|
249 |
+
with cols[metric_idx]:
|
250 |
+
avg_rouge = st.session_state.evaluation_results['rouge1_score'].mean()
|
251 |
+
st.metric(label="ROUGE-1 Score", value=f"{avg_rouge:.2f}")
|
252 |
+
metric_idx += 1
|
253 |
+
|
254 |
+
if "Perplexity" in selected_traditional_metrics:
|
255 |
+
with cols[metric_idx]:
|
256 |
+
avg_rouge = st.session_state.evaluation_results['perplexity_score'].mean()
|
257 |
+
st.metric(label="perplexity Score", value=f"{avg_rouge:.2f}")
|
258 |
+
metric_idx += 1
|
259 |
+
|
260 |
+
with tab2:
|
261 |
+
st.dataframe(
|
262 |
+
st.session_state.evaluation_results,
|
263 |
+
use_container_width=True,
|
264 |
+
height=400
|
265 |
+
)
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
st.error(f"An error occurred: {str(e)}")
|
269 |
+
|
270 |
+
else:
|
271 |
+
# Display welcome message and instructions
|
272 |
+
st.info("👈 Please upload your evaluation data file (CSV/Excel) from the sidebar to begin.")
|
273 |
+
|
274 |
+
# Display sample format
|
275 |
+
st.subheader("📋 Expected Data Format")
|
276 |
+
sample_data = pd.DataFrame({
|
277 |
+
'question': ['What is RAG?', 'How does RAG work?'],
|
278 |
+
'answer': ['RAG is...', 'RAG works by...'],
|
279 |
+
'context': ['RAG (Retrieval-Augmented Generation)...', 'The RAG process involves...']
|
280 |
+
})
|
281 |
+
st.dataframe(sample_data, use_container_width=True)
|
282 |
+
|
283 |
+
if __name__ == "__main__":
|
284 |
+
main()
|