Spaces:
Sleeping
Sleeping
Create phoenix_code.py
Browse files- phoenix_code.py +108 -0
phoenix_code.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Phoenix Evaluation
|
| 2 |
+
import os
|
| 3 |
+
from getpass import getpass
|
| 4 |
+
import nest_asyncio
|
| 5 |
+
nest_asyncio.apply()
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import openai
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from pycm import ConfusionMatrix
|
| 11 |
+
from sklearn.metrics import classification_report
|
| 12 |
+
|
| 13 |
+
from phoenix.evals import (
|
| 14 |
+
HALLUCINATION_PROMPT_RAILS_MAP,
|
| 15 |
+
HALLUCINATION_PROMPT_TEMPLATE,
|
| 16 |
+
OpenAIModel,
|
| 17 |
+
download_benchmark_dataset,
|
| 18 |
+
llm_classify,
|
| 19 |
+
)
|
| 20 |
+
import phoenix.evals.default_templates as templates
|
| 21 |
+
from phoenix.evals import (
|
| 22 |
+
OpenAIModel,
|
| 23 |
+
download_benchmark_dataset,
|
| 24 |
+
llm_classify,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
from phoenix.evals import (
|
| 28 |
+
RAG_RELEVANCY_PROMPT_RAILS_MAP,
|
| 29 |
+
RAG_RELEVANCY_PROMPT_TEMPLATE,
|
| 30 |
+
OpenAIModel,
|
| 31 |
+
download_benchmark_dataset,
|
| 32 |
+
llm_classify,
|
| 33 |
+
)
|
| 34 |
+
from phoenix.evals import (
|
| 35 |
+
CODE_READABILITY_PROMPT_RAILS_MAP,
|
| 36 |
+
CODE_READABILITY_PROMPT_TEMPLATE,
|
| 37 |
+
OpenAIModel,
|
| 38 |
+
download_benchmark_dataset,
|
| 39 |
+
llm_classify,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
from phoenix.evals import (
|
| 44 |
+
TOXICITY_PROMPT_RAILS_MAP,
|
| 45 |
+
TOXICITY_PROMPT_TEMPLATE,
|
| 46 |
+
OpenAIModel,
|
| 47 |
+
download_benchmark_dataset,
|
| 48 |
+
llm_classify,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
from phoenix.evals import (
|
| 52 |
+
QA_PROMPT_RAILS_MAP,
|
| 53 |
+
QA_PROMPT_TEMPLATE,
|
| 54 |
+
OpenAIModel,
|
| 55 |
+
download_benchmark_dataset,
|
| 56 |
+
llm_classify,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
from phoenix.evals.default_templates import (
|
| 60 |
+
REFERENCE_LINK_CORRECTNESS_PROMPT_RAILS_MAP,
|
| 61 |
+
REFERENCE_LINK_CORRECTNESS_PROMPT_TEMPLATE
|
| 62 |
+
)
|
| 63 |
+
from phoenix.evals import (
|
| 64 |
+
OpenAIModel,
|
| 65 |
+
download_benchmark_dataset,
|
| 66 |
+
llm_classify,
|
| 67 |
+
llm_generate,
|
| 68 |
+
USER_FRUSTRATION_PROMPT_RAILS_MAP,
|
| 69 |
+
USER_FRUSTRATION_PROMPT_TEMPLATE,
|
| 70 |
+
)
|
| 71 |
+
from phoenix.evals import (
|
| 72 |
+
SQL_GEN_EVAL_PROMPT_TEMPLATE,
|
| 73 |
+
SQL_GEN_EVAL_PROMPT_RAILS_MAP
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def phoenix_eval(metrics, openai_api_key, df):
|
| 78 |
+
import os
|
| 79 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 80 |
+
model = OpenAIModel(model="gpt-3.5-turbo", temperature=0.25)
|
| 81 |
+
|
| 82 |
+
# Rename columns to match expected input names for evaluation
|
| 83 |
+
df.rename(columns={"question": "input", "answer": "output", "cleaned_context": "reference"}, inplace=True)
|
| 84 |
+
|
| 85 |
+
# Define a dictionary of metric configurations
|
| 86 |
+
metric_mappings = {
|
| 87 |
+
"hallucination": (HALLUCINATION_PROMPT_TEMPLATE, HALLUCINATION_PROMPT_RAILS_MAP, "Hallucination"),
|
| 88 |
+
"toxicity": (TOXICITY_PROMPT_TEMPLATE, TOXICITY_PROMPT_RAILS_MAP, "Toxicity"),
|
| 89 |
+
"relevance": (RAG_RELEVANCY_PROMPT_TEMPLATE, RAG_RELEVANCY_PROMPT_RAILS_MAP, "Relevancy"),
|
| 90 |
+
"Q&A": (QA_PROMPT_TEMPLATE, QA_PROMPT_RAILS_MAP, "Q&A_eval"),
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Loop over each metric in the provided metrics list
|
| 94 |
+
for metric in metrics:
|
| 95 |
+
if metric in metric_mappings:
|
| 96 |
+
template, rails_map, column_name = metric_mappings[metric]
|
| 97 |
+
rails = list(rails_map.values())
|
| 98 |
+
|
| 99 |
+
# Perform classification and add results to a new column for the current metric
|
| 100 |
+
classifications = llm_classify(dataframe=df, template=template, model=model, rails=rails, concurrency=20)["label"].tolist()
|
| 101 |
+
df[column_name] = classifications
|
| 102 |
+
else:
|
| 103 |
+
print(f"Warning: Metric '{metric}' is not supported.")
|
| 104 |
+
|
| 105 |
+
# Rename columns back to their original names
|
| 106 |
+
df.rename(columns={"input": "question", "output": "answer", "reference": "context"}, inplace=True)
|
| 107 |
+
|
| 108 |
+
return df
|