Spaces:
Sleeping
Sleeping
Create phoenix_code.py
Browse files- phoenix_code.py +108 -0
phoenix_code.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Phoenix Evaluation
|
2 |
+
import os
|
3 |
+
from getpass import getpass
|
4 |
+
import nest_asyncio
|
5 |
+
nest_asyncio.apply()
|
6 |
+
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import openai
|
9 |
+
import pandas as pd
|
10 |
+
from pycm import ConfusionMatrix
|
11 |
+
from sklearn.metrics import classification_report
|
12 |
+
|
13 |
+
from phoenix.evals import (
|
14 |
+
HALLUCINATION_PROMPT_RAILS_MAP,
|
15 |
+
HALLUCINATION_PROMPT_TEMPLATE,
|
16 |
+
OpenAIModel,
|
17 |
+
download_benchmark_dataset,
|
18 |
+
llm_classify,
|
19 |
+
)
|
20 |
+
import phoenix.evals.default_templates as templates
|
21 |
+
from phoenix.evals import (
|
22 |
+
OpenAIModel,
|
23 |
+
download_benchmark_dataset,
|
24 |
+
llm_classify,
|
25 |
+
)
|
26 |
+
|
27 |
+
from phoenix.evals import (
|
28 |
+
RAG_RELEVANCY_PROMPT_RAILS_MAP,
|
29 |
+
RAG_RELEVANCY_PROMPT_TEMPLATE,
|
30 |
+
OpenAIModel,
|
31 |
+
download_benchmark_dataset,
|
32 |
+
llm_classify,
|
33 |
+
)
|
34 |
+
from phoenix.evals import (
|
35 |
+
CODE_READABILITY_PROMPT_RAILS_MAP,
|
36 |
+
CODE_READABILITY_PROMPT_TEMPLATE,
|
37 |
+
OpenAIModel,
|
38 |
+
download_benchmark_dataset,
|
39 |
+
llm_classify,
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
from phoenix.evals import (
|
44 |
+
TOXICITY_PROMPT_RAILS_MAP,
|
45 |
+
TOXICITY_PROMPT_TEMPLATE,
|
46 |
+
OpenAIModel,
|
47 |
+
download_benchmark_dataset,
|
48 |
+
llm_classify,
|
49 |
+
)
|
50 |
+
|
51 |
+
from phoenix.evals import (
|
52 |
+
QA_PROMPT_RAILS_MAP,
|
53 |
+
QA_PROMPT_TEMPLATE,
|
54 |
+
OpenAIModel,
|
55 |
+
download_benchmark_dataset,
|
56 |
+
llm_classify,
|
57 |
+
)
|
58 |
+
|
59 |
+
from phoenix.evals.default_templates import (
|
60 |
+
REFERENCE_LINK_CORRECTNESS_PROMPT_RAILS_MAP,
|
61 |
+
REFERENCE_LINK_CORRECTNESS_PROMPT_TEMPLATE
|
62 |
+
)
|
63 |
+
from phoenix.evals import (
|
64 |
+
OpenAIModel,
|
65 |
+
download_benchmark_dataset,
|
66 |
+
llm_classify,
|
67 |
+
llm_generate,
|
68 |
+
USER_FRUSTRATION_PROMPT_RAILS_MAP,
|
69 |
+
USER_FRUSTRATION_PROMPT_TEMPLATE,
|
70 |
+
)
|
71 |
+
from phoenix.evals import (
|
72 |
+
SQL_GEN_EVAL_PROMPT_TEMPLATE,
|
73 |
+
SQL_GEN_EVAL_PROMPT_RAILS_MAP
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
def phoenix_eval(metrics, openai_api_key, df):
|
78 |
+
import os
|
79 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
80 |
+
model = OpenAIModel(model="gpt-3.5-turbo", temperature=0.25)
|
81 |
+
|
82 |
+
# Rename columns to match expected input names for evaluation
|
83 |
+
df.rename(columns={"question": "input", "answer": "output", "cleaned_context": "reference"}, inplace=True)
|
84 |
+
|
85 |
+
# Define a dictionary of metric configurations
|
86 |
+
metric_mappings = {
|
87 |
+
"hallucination": (HALLUCINATION_PROMPT_TEMPLATE, HALLUCINATION_PROMPT_RAILS_MAP, "Hallucination"),
|
88 |
+
"toxicity": (TOXICITY_PROMPT_TEMPLATE, TOXICITY_PROMPT_RAILS_MAP, "Toxicity"),
|
89 |
+
"relevance": (RAG_RELEVANCY_PROMPT_TEMPLATE, RAG_RELEVANCY_PROMPT_RAILS_MAP, "Relevancy"),
|
90 |
+
"Q&A": (QA_PROMPT_TEMPLATE, QA_PROMPT_RAILS_MAP, "Q&A_eval"),
|
91 |
+
}
|
92 |
+
|
93 |
+
# Loop over each metric in the provided metrics list
|
94 |
+
for metric in metrics:
|
95 |
+
if metric in metric_mappings:
|
96 |
+
template, rails_map, column_name = metric_mappings[metric]
|
97 |
+
rails = list(rails_map.values())
|
98 |
+
|
99 |
+
# Perform classification and add results to a new column for the current metric
|
100 |
+
classifications = llm_classify(dataframe=df, template=template, model=model, rails=rails, concurrency=20)["label"].tolist()
|
101 |
+
df[column_name] = classifications
|
102 |
+
else:
|
103 |
+
print(f"Warning: Metric '{metric}' is not supported.")
|
104 |
+
|
105 |
+
# Rename columns back to their original names
|
106 |
+
df.rename(columns={"input": "question", "output": "answer", "reference": "context"}, inplace=True)
|
107 |
+
|
108 |
+
return df
|