File size: 1,820 Bytes
01f4e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os

from surya.input.langs import replace_lang_with_code, get_unique_langs
from surya.input.load import load_from_folder, load_from_file, load_lang_file
from surya.model.detection.model import load_model as load_detection_model, load_processor as load_detection_processor
from surya.model.recognition.model import load_model as load_recognition_model
from surya.model.recognition.processor import load_processor as load_recognition_processor
from surya.model.recognition.tokenizer import _tokenize
from surya.ocr import run_ocr
from surya.postprocessing.text import draw_text_on_image


def main(input_path, max_pages=None, start_page=0, langs=None, lang_file=None):

    assert langs or lang_file, "Must provide either langs or lang_file"

    if os.path.isdir(input_path):
        images, names = load_from_folder(input_path, max_pages, start_page)
    else:
        images, names = load_from_file(input_path, max_pages, start_page)


    langs = langs.split(",")
    replace_lang_with_code(langs)
    image_langs = [langs] * len(images)

    det_processor = load_detection_processor()
    det_model = load_detection_model()

    _, lang_tokens = _tokenize("", get_unique_langs(image_langs))
    rec_model = load_recognition_model(langs=lang_tokens) # Prune model moe layer to only include languages we need
    rec_processor = load_recognition_processor()

    predictions_by_image = run_ocr(images, image_langs, det_model, det_processor, rec_model, rec_processor)

    for idx, (name, image, pred, langs) in enumerate(zip(names, images, predictions_by_image, image_langs)):
        bboxes = [l.bbox for l in pred.text_lines]
        pred_text = [l.text for l in pred.text_lines]
        page_image = draw_text_on_image(bboxes, pred_text, image.size, langs, has_math="_math" in langs)
        return page_image