Spaces:
Runtime error
Runtime error
File size: 11,366 Bytes
e972367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import cv2
import numpy as np
from PIL import Image, ImageDraw
import ffmpeg
import gradio as gr
from tqdm import tqdm
import zstandard as zstd
import brotli
import torch
import torchvision.transforms as transforms
from torch.nn import functional as F
import cupy as cp
import io
import mimetypes
from pydub import AudioSegment
from PyPDF2 import PdfFileReader, PdfFileWriter
import docx
import openpyxl
class GPUAcceleratedCompressionToolkit:
def __init__(self):
self.supported_formats = {
'image': ['.jpg', '.jpeg', '.png', '.bmp', '.tiff'],
'video': ['.mp4', '.avi', '.mov', '.mkv'],
'audio': ['.mp3', '.wav', '.ogg', '.flac'],
'document': ['.txt', '.pdf', '.doc', '.docx'],
'spreadsheet': ['.xlsx', '.xls', '.csv']
}
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def detect_file_type(self, file_path):
mime_type, _ = mimetypes.guess_type(file_path)
if mime_type:
type_category = mime_type.split('/')[0]
if type_category in ['image', 'video', 'audio']:
return type_category
elif type_category == 'application':
if mime_type in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document']:
return 'document'
elif mime_type in ['application/vnd.ms-excel', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet']:
return 'spreadsheet'
return 'other'
def compress_image(self, input_path, output_path, compression_level, use_gpu=False, output_format='original'):
img = Image.open(input_path)
original_format = img.format if img.format else 'JPEG'
if output_format == 'original':
save_format = original_format
else:
save_format = output_format.upper()
quality = int(compression_level)
if use_gpu:
tensor = transforms.ToTensor()(img).unsqueeze(0).to(self.device)
compressed = F.interpolate(tensor, scale_factor=quality/100, mode='bilinear', align_corners=False)
compressed = F.interpolate(compressed, size=tensor.shape[2:], mode='bilinear', align_corners=False)
result = transforms.ToPILImage()(compressed.squeeze(0).cpu())
result.save(output_path, format=save_format, quality=quality)
else:
img.save(output_path, format=save_format, quality=quality)
def compress_video(self, input_path, output_path, compression_level, use_gpu=False, output_format=None):
if use_gpu:
vcodec = 'h264_nvenc'
else:
vcodec = 'libx264'
crf = int(100 - compression_level) # Invert the scale for CRF
if output_format is None:
output_format = os.path.splitext(input_path)[1][1:]
(
ffmpeg
.input(input_path)
.output(output_path, vcodec=vcodec, crf=str(crf), acodec='aac', **{'preset': 'slow'})
.overwrite_output()
.run(capture_stdout=True, capture_stderr=True)
)
def compress_audio(self, input_path, output_path, compression_level, output_format=None):
if output_format is None:
output_format = os.path.splitext(input_path)[1][1:]
bitrate = f"{int(compression_level * 3.2)}k" # Scale compression_level to bitrate
audio = AudioSegment.from_file(input_path)
audio.export(output_path, format=output_format, bitrate=bitrate)
def compress_document(self, input_path, output_path, compression_level, output_format=None):
if output_format is None:
output_format = os.path.splitext(input_path)[1][1:]
if output_format == 'pdf':
with open(input_path, 'rb') as file:
reader = PdfFileReader(file)
writer = PdfFileWriter()
for page in range(reader.getNumPages()):
page = reader.getPage(page)
page.compressContentStreams() # This is CPU intensive!
writer.addPage(page)
with open(output_path, 'wb') as output_file:
writer.write(output_file)
elif output_format in ['doc', 'docx']:
doc = docx.Document(input_path)
doc.save(output_path)
else:
# For other document types, use generic file compression
self.compress_file_gpu(input_path, output_path, compression_level)
def compress_spreadsheet(self, input_path, output_path, compression_level, output_format=None):
if output_format is None:
output_format = os.path.splitext(input_path)[1][1:]
wb = openpyxl.load_workbook(input_path)
wb.save(output_path)
def compress_file_gpu(self, input_path, output_path, compression_level):
level = int(compression_level / 10) # Scale compression_level to Zstandard level
with open(input_path, 'rb') as f_in:
data = f_in.read()
d_data = cp.asarray(bytearray(data))
cctx = zstd.ZstdCompressor(level=level)
d_compressed = cp.asarray(bytearray(cctx.compress(d_data.get())))
compressed = d_compressed.get().tobytes()
with open(output_path, 'wb') as f_out:
f_out.write(compressed)
def batch_compress_gpu(self, input_files, output_dir, use_gpu, output_format, compression_level):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
results = []
for file in tqdm(input_files):
input_path = file.name
file_type = self.detect_file_type(input_path)
# Determine output format and path
if output_format == 'original':
_, ext = os.path.splitext(input_path)
output_path = os.path.join(output_dir, f"compressed_{os.path.basename(input_path)}")
else:
output_path = os.path.join(output_dir, f"compressed_{os.path.splitext(os.path.basename(input_path))[0]}.{output_format}")
if file_type == 'image':
self.compress_image(input_path, output_path, compression_level, use_gpu=use_gpu, output_format=output_format)
elif file_type == 'video':
self.compress_video(input_path, output_path, compression_level, use_gpu=use_gpu, output_format=output_format if output_format != 'original' else None)
elif file_type == 'audio':
self.compress_audio(input_path, output_path, compression_level, output_format=output_format if output_format != 'original' else None)
elif file_type == 'document':
self.compress_document(input_path, output_path, compression_level, output_format=output_format if output_format != 'original' else None)
elif file_type == 'spreadsheet':
self.compress_spreadsheet(input_path, output_path, compression_level, output_format=output_format if output_format != 'original' else None)
else:
self.compress_file_gpu(input_path, output_path, compression_level)
results.append(output_path)
return results
def real_time_preview_gpu(self, input_path, compression_level, use_gpu=False):
file_type = self.detect_file_type(input_path)
if file_type == 'image':
img = Image.open(input_path)
if use_gpu:
tensor = transforms.ToTensor()(img).unsqueeze(0).to(self.device)
tensor = F.interpolate(tensor, size=(300, 300), mode='bilinear', align_corners=False)
compressed = F.interpolate(tensor, scale_factor=compression_level/100, mode='bilinear', align_corners=False)
compressed = F.interpolate(compressed, size=tensor.shape[2:], mode='bilinear', align_corners=False)
result = transforms.ToPILImage()(compressed.squeeze(0).cpu())
else:
img = img.resize((300, 300))
buffer = io.BytesIO()
img.save(buffer, format='JPEG', quality=int(compression_level))
buffer.seek(0)
result = Image.open(buffer)
return result
elif file_type == 'video':
video = cv2.VideoCapture(input_path)
ret, frame = video.read()
if ret:
if use_gpu:
d_frame = cp.asarray(frame)
d_frame = cp.resize(d_frame, (300, 300))
_, d_buffer = cv2.imencode('.jpg', cp.asnumpy(d_frame), [cv2.IMWRITE_JPEG_QUALITY, int(compression_level)])
else:
frame = cv2.resize(frame, (300, 300))
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, int(compression_level)])
return Image.open(io.BytesIO(buffer.tobytes()))
elif file_type in ['audio', 'document', 'spreadsheet', 'other']:
placeholder = Image.new('RGB', (300, 300), color='lightgray')
draw = ImageDraw.Draw(placeholder)
draw.text((10, 150), f"{file_type.capitalize()} Preview\nNot Available", fill='black')
return placeholder
return None
def gradio_interface(toolkit):
def process_files(files, use_gpu, output_format, compression_level):
output_dir = "compressed_output"
return toolkit.batch_compress_gpu(files, output_dir, use_gpu, output_format, compression_level)
def update_preview(file, compression_level, use_gpu):
if file is None:
return None
return toolkit.real_time_preview_gpu(file.name, compression_level, use_gpu)
iface = gr.Interface(
fn=process_files,
inputs=[
gr.File(label="Input Files", file_count="multiple"),
gr.Checkbox(label="Use GPU Acceleration"),
gr.Dropdown(
choices=["original", "jpg", "png", "mp4", "mp3", "pdf", "docx", "xlsx"],
label="Output Format",
value="original"
),
gr.Slider(1, 100, 50, step=1, label="Compression Level")
],
outputs=gr.File(label="Compressed Files", file_count="multiple"),
title="GPU-Accelerated Compression Toolkit",
description="Drag and drop files for compression of images, videos, audio, documents, spreadsheets, and other files. File type is automatically detected.",
allow_flagging="never"
)
preview = gr.Interface(
fn=update_preview,
inputs=[
gr.File(label="Input File"),
gr.Slider(1, 100, 50, step=1, label="Compression Level"),
gr.Checkbox(label="Use GPU Acceleration")
],
outputs=gr.Image(label="Preview"),
title="Real-time Compression Preview",
live=True,
allow_flagging="never"
)
return gr.TabbedInterface([iface, preview], ["Compress", "Preview"])
if __name__ == "__main__":
toolkit = GPUAcceleratedCompressionToolkit()
interface = gradio_interface(toolkit)
interface.launch(share=True) |