Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,321 Bytes
29f7f08 a8aee7f 29f7f08 40602a2 29f7f08 40602a2 29f7f08 a8aee7f 40602a2 b2adbbf 1567e75 b2adbbf 1567e75 b2adbbf 1567e75 a8aee7f 29f7f08 a8aee7f 29f7f08 0b7bdc7 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 a8aee7f 29f7f08 40602a2 29f7f08 40602a2 29f7f08 40602a2 29f7f08 40602a2 29f7f08 40602a2 29f7f08 40602a2 29f7f08 a8aee7f 29f7f08 0b7bdc7 29f7f08 40602a2 29f7f08 a8aee7f 29f7f08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
from threading import Thread
from typing import Iterator
import json
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess
import copy
import subprocess
import sys
def run_command(command):
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
output, error = process.communicate()
if process.returncode != 0:
print(f"Error executing command: {command}")
print(f"Error message: {error.decode('utf-8')}")
sys.exit(1)
return output.decode('utf-8')
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8000"))
model_choices = [
"rubra-ai/Meta-Llama-3-8B-Instruct",
"rubra-ai/Qwen2-7B-Instruct",
"rubra-ai/Phi-3-mini-128k-instruct",
"rubra-ai/Mistral-7B-Instruct-v0.3",
# "rubra-ai/Mistral-7B-Instruct-v0.2",
# "rubra-ai/gemma-1.1-2b-it"
]
DESCRIPTION = """\
# Rubra v0.1 - A Collection of Tool (Function) Calling LLMs
This is a demo of the Rubra collection of models. You can use the models for general conversation,
task completion, and function calling with the provided tools input.
See more at https://docs.rubra.ai/ & https://github.com/rubra-ai/rubra
"""
model_table = """
<p/>
---
## Rubra Benchmarks
| Model | Params (in billions) | Function Calling | MMLU (5-shot) | GPQA (0-shot) | GSM-8K (8-shot, CoT) | MATH (4-shot, CoT) | MT-bench |
|------------------------------------------|----------------------|------------------|---------------|---------------|----------------------|--------------------|----------|
| GPT-4o | - | 98.57% | - | 53.6 | - | - | - |
| Claude-3.5 Sonnet | - | 98.57% | 88.7 | 59.4 | - | - | - |
| Rubra Llama-3 70B Instruct | 70.6 | 97.85% | 75.90 | 33.93 | 82.26 | 34.24 | 8.36 |
| Rubra Llama-3 8B Instruct | 8.9 | 89.28% | 64.39 | 31.70 | 68.99 | 23.76 | 8.03 |
| Rubra Qwen2-7B-Instruct | 8.55 | 85.71% | 68.88 | 30.36 | 75.82 | 28.72 | 8.08 |
| Rubra Mistral 7B Instruct v0.3 | 8.12 | 73.57% | 59.12 | 29.91 | 43.29 | 11.14 | 7.69 |
| Rubra Phi-3 Mini 128k Instruct | 4.73 | 70.00% | 67.87 | 29.69 | 79.45 | 30.80 | 8.21 |
| Rubra Mistral 7B Instruct v0.2 | 8.11 | 69.28% | 58.90 | 29.91 | 34.12 | 8.36 | 7.36 |
| meetkai/functionary-small-v2.5 | 8.03 | 57.14% | 63.92 | 32.14 | 66.11 | 20.54 | 7.09 |
| Nexusflow/NexusRaven-V2-13B | 13.0 | 53.75% ∔ | 43.23 | 28.79 | 22.67 | 7.12 | 5.36 |
| Mistral Large (closed-source) | - | 48.60% | - | - | 91.21 | 45.0 | - |
| Rubra Gemma-1.1 2B Instruct | 2.84 | 45.00% | 38.85 | 24.55 | 6.14 | 2.38 | 5.75 |
| meetkai/functionary-medium-v3.0 | 70.6 | 46.43% | 79.85 | 38.39 | 89.54 | 43.02 | 5.49 |
| gorilla-llm/gorilla-openfunctions-v2 | 6.91 | 41.25% ∔ | 49.14 | 23.66 | 48.29 | 17.54 | 5.13 |
| NousResearch/Hermes-2-Pro-Llama-3-8B | 8.03 | 41.25% | 64.16 | 31.92 | 73.92 | 21.58 | 7.83 |
| Mistral 7B Instruct v0.3 | 7.25 | 22.5% | 62.10 | 30.58 | 53.07 | 12.98 | 7.50 |
| Gemma-1.1 2B Instruct | 2.51 | - | 37.84 | 22.99 | 6.29 | 6.14 | 5.82 |
| Llama-3 8B Instruct | 8.03 | - | 65.69 | 31.47 | 77.41 | 27.58 | 8.07 |
| Llama-3 70B Instruct | 70.6 | - | 79.90 | 38.17 | 90.67 | 44.24 | 8.88 |
| Mistral 7B Instruct v0.2 | 7.24 | - | 59.27 | 27.68 | 43.21 | 10.30 | 7.50 |
| Phi-3 Mini 128k Instruct | 3.82 | - | 69.36 | 27.01 | 83.7 | 32.92 | 8.02 |
| Qwen2-7B-Instruct | 7.62 | - | 70.78 | 32.14 | 78.54 | 30.10 | 8.29 |
∔ `Nexusflow/NexusRaven-V2-13B` and `gorilla-llm/gorilla-openfunctions-v2` don't accept tool observations, the result of running a tool or function once the LLM calls it, so we appended the observation to the prompt.
"""
LICENSE = """
<p/>
---
Rubra code is licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Rubra models are licensed under the parent model's license. See the parent model card for more information.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "rubra-ai/Meta-Llama-3-8B-Instruct" # Default model
model = None
tokenizer = None
def load_model(model_name):
global model, tokenizer
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=False)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model.generation_config.pad_token_id = tokenizer.pad_token_id
load_model(model_id) # Load the default model
def is_valid_json(tools: str) -> bool:
try:
json.loads(tools)
return True
except ValueError:
return False
def validate_tools(tools):
if tools.strip() == "" or is_valid_json(tools):
return gr.update(visible=False)
else:
return gr.update(visible=True)
def json_to_markdown(json_obj):
"""Convert a JSON object to a formatted markdown string."""
markdown = ""
for item in json_obj:
if item.get("type") == "text":
# For text items, just add the text content
markdown += item.get("text", "") + "\n\n"
elif item.get("type") == "function":
# For function calls, format as JSON
markdown += "```json\n"
# markdown += json.dumps(item.get("function", {}), indent=2)
markdown += json.dumps(item, indent=2)
markdown += "\n```\n\n"
return markdown.strip()
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, system_prompt, tools, role, max_new_tokens, temperature):
user_message = history[-1][0]
if history[-1][1] is None:
history[-1][1] = "" # Ensure it's never None
ui_history = list(history) # Clone the history for UI updates
all_tool_outputs = [] # Store all processed outputs for final aggregation
output_accumulated = "" # To accumulate outputs before processing
for chunk in generate(user_message, history[:-1], system_prompt, tools, role, max_new_tokens, temperature):
history[-1][1] += chunk
print(history[-1][1])
if "endtoolcall" in history[-1][1]:
process_output = postprocess_output(history[-1][1])
print("process output:\n", process_output)
if process_output:
temp_history = copy.deepcopy(history) # Use deepcopy here
if isinstance(process_output, list) and len(process_output) > 0 and isinstance(process_output[0], dict):
markdown_output = json_to_markdown(process_output)
temp_history[-1][1] = markdown_output
else:
temp_history[-1][1] = str(process_output)
print(temp_history[-1][1])
print("--------------------------")
yield temp_history
else:
print(history[-1][1])
print("--------------------------")
yield history
else:
print(history[-1][1])
print("--------------------------")
yield history
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
tools: str,
role: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
) -> Iterator[str]:
global model, tokenizer
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": role, "content": message})
if tools:
if not is_valid_json(tools):
yield "Invalid JSON in tools. Please correct it."
return
tools = json.loads(tools)
formatted_msgs = preprocess_input(msgs=conversation, tools=tools)
else:
formatted_msgs = conversation
input_ids = tokenizer.apply_chat_template(formatted_msgs, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=0.95,
temperature=temperature,
num_beams=1,
repetition_penalty=1.2,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for text in streamer:
# print("Generated text:", text)
yield text
bot_message = """Hello! How can I assist you today? If you have any questions or need information on a specific topic, feel free to ask. I can also utilize `tools` that you input to help you better. For example:
```
[
{
"type": "function",
"function": {
"name": "get_stock_information",
"description": "Get the current stock market information for a given company",
"parameters": {
"type": "object",
"properties": {
"ticker_symbol": {
"type": "string",
"description": "The stock ticker symbol of the company, e.g., 'AAPL' for Apple Inc."
},
"exchange": {
"type": "string",
"description": "The stock exchange where the company is listed, e.g., 'NASDAQ'. If not provided, default to the primary exchange for the ticker symbol."
},
"data_type": {
"type": "string",
"enum": ["price", "volume", "market_cap"],
"description": "The type of stock data to retrieve: 'price' for current price, 'volume' for trading volume, 'market_cap' for market capitalization."
}
},
"required": ["ticker_symbol", "data_type"]
}
}
}
]
```
You can also define `functions` (deprecated in favor of `tools` in OpenAI):
```
[
{
"name": "get_current_date",
"description": "Gets the current date at the given location. Results are in ISO 8601 date format; e.g. 2024-04-25",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state to get the current date at, e.g. San Francisco, CA"
}
},
"required":["location"]
}
}
]
```
"""
def create_chat_interface():
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=True, elem_id="main-row"):
with gr.Column(scale=3, min_width=500):
# Initialize the chatbot with the welcome message
chatbot = gr.Chatbot(
value=[("Hi", bot_message)],
show_copy_button=True,
elem_id="chatbot",
show_label=False,
render_markdown=True,
height="100%",
layout='bubble',
avatar_images=("human.png", "bot.png")
)
error_box = gr.Markdown(visible=False, elem_id="error-box")
with gr.Column(scale=2, min_width=300):
model_dropdown = gr.Dropdown(
choices=model_choices,
label="Select Model",
value="rubra-ai/Meta-Llama-3-8B-Instruct"
)
model_dropdown.change(load_model, inputs=[model_dropdown])
with gr.Accordion("Settings", open=False):
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.2,
step=0.01,
value=0.01,
)
with gr.Row():
role = gr.Dropdown(choices=["user", "observation"], value="user", label="Role", scale=4)
system_prompt = gr.Textbox(label="System Prompt", lines=1, info="Optional")
tools = gr.Textbox(label="Tools", lines=1, placeholder="Enter tools in JSON format", info="Optional")
with gr.Row():
user_input = gr.Textbox(
label="User Input",
placeholder="Type your message here...",
show_label=True,
scale=8
)
submit_btn = gr.Button("Submit", variant="primary", elem_id="submit-button")
clear_btn = gr.Button("Clear Conversation", elem_id="clear-button")
tools.change(validate_tools, tools, error_box)
submit_btn.click(
user,
[user_input, chatbot],
[user_input, chatbot],
queue=False
).then(
bot,
[chatbot, system_prompt, tools, role, max_new_tokens, temperature],
chatbot
)
clear_btn.click(lambda: ([], None), outputs=[chatbot, error_box])
gr.Markdown(model_table)
gr.Markdown(LICENSE)
return demo
if __name__ == "__main__":
# Initialize npm project if package.json doesn't exist
if not os.path.exists('package.json'):
print("Initializing npm project...")
run_command("npm init -y")
# Install jsonrepair locally
print("Installing jsonrepair...")
run_command("npm install jsonrepair")
# Verify installation
print("Verifying jsonrepair installation:")
run_command("npm list jsonrepair")
# Add node_modules/.bin to PATH
os.environ['PATH'] = f"{os.path.join(os.getcwd(), 'node_modules', '.bin')}:{os.environ['PATH']}"
from preprocess import preprocess_input
from postprocess import postprocess_output
demo = create_chat_interface()
demo.queue(max_size=20).launch()
|