File size: 81,858 Bytes
6b26348
 
 
 
47a7343
6b26348
47a7343
 
 
 
 
 
 
 
 
 
6b26348
 
 
 
 
 
 
 
47a7343
6b26348
 
 
9065a7a
 
 
6b26348
 
 
 
47a7343
6b26348
 
 
47a7343
6b26348
 
 
 
47a7343
6b26348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
47a7343
6b26348
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a7343
6b26348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
 
47a7343
6b26348
47a7343
6b26348
47a7343
9065a7a
47a7343
9065a7a
6b26348
 
 
 
 
 
47a7343
 
6b26348
348515d
6b26348
 
 
 
 
 
bc122dd
6b26348
 
 
 
 
 
348515d
6b26348
bc122dd
 
 
 
 
 
 
 
6b26348
 
 
348515d
6b26348
 
 
 
 
 
 
bc122dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b26348
 
 
 
bc122dd
6b26348
 
 
 
bc122dd
6b26348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\USER\\Desktop\\WorkSpace\\MasterCourse\\scripts\\capstone project 2\\Shoe-Type-Recognizer\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from fastai.vision.all import load_learner\n",
    "from fastai.vision.all import PILImage\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pathlib\n",
    "temp = pathlib.PosixPath\n",
    "pathlib.PosixPath = pathlib.WindowsPath"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = load_learner('shoes-recognizer-v4.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "#!export\n",
    "shoe_labels = (\n",
    "   'Army boots',\n",
    "   'Ballet flats', \n",
    "   'Basketball shoes',\n",
    "   'Brogues',\n",
    "   'Chelsea Boot',\n",
    "   'Chuck Taylor',\n",
    "   'Climbing shoes',\n",
    "   'Cone heels',\n",
    "   'Court shoes',\n",
    "   'Cowboy boots',\n",
    "   'Derby shoes',\n",
    "   'Dress shoe',\n",
    "   'Flip flop',\n",
    "   'Golf shoes',\n",
    "   'High heels',\n",
    "   'High-tops shoes',\n",
    "   'Hiking boots',\n",
    "   'Ice-skates shoes',\n",
    "   'Kitten heels',\n",
    "   'Knee high boots', \n",
    "   'Laced booties',\n",
    "   'Lita shoe',\n",
    "   'Loafer',\n",
    "   'Mary Jane platforms',\n",
    "   'Moccasin',\n",
    "   'Mule shoes',\n",
    "   'Old skool',\n",
    "   'Oxford shoe',\n",
    "   'Platform heels',\n",
    "   'Running shoes',\n",
    "   'Sandal',\n",
    "   'Sneakers ',\n",
    "   'Soccer shoes',\n",
    "   'Uggs',\n",
    "   'Wedges shoe',\n",
    "   'Wellington boots'\n",
    ")\n",
    "\n",
    "def recognize_image(image):\n",
    "  pred, idx, probs = model.predict(image)\n",
    "  print(pred, probs)\n",
    "  return dict(zip(shoe_labels, map(float, probs)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADAAMADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACisLXfGGieHPl1C8VZsZEMYLufwHT8a4DVfjWF3LpWlE+kl0+P8Ax1f8aAPXKK+dbz4s+LLkkR3sFuvpDAvH4nJrKl8d+J5fv65e5J/hl2/yoA+n6K+af+Ei8QTxBxrN/wA9R9pf/Gp7bWNXcqG1S+ck87rh/wDGnYD6PorivhteT3ejXXnzyTFJ8BpGLHBUHvXa0gCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8L8e6cl94p1GUSFJA4XgZBAUV57PBic224bj0PQV6T4ouFk8T6kYmD/AL4g7Tn2rz3VldNVQIhaRiAoHc1QjIuIJbN9kmMn0Oa2bO00iKzSW9mka7dSywrwF9M+9UJxIkzzKGdx1kA4H09B70yyy7XDMckQuSTSAuwXzfZmZVVSNqjA9c/4VqaeztCZJGLMRk5rnrYE22B/FOo/Q/4109hHuiKAYwAKYHrnwu40u/X0nX/0EV3lcJ8Mf+PDUR/03X/0EV3dJjQUUUUgCiiigAooooAKKKKACiiigAooooAKKKKAEZlRGdiAqjJJ7CvMJNY8S+IL2SfwjYSW9hDIQtxNNhJ/X5W4x9BmvTJ4Irm3kgmQPFIpR1PRgeoqGSM2WmSR6fbpuhhIghUbVyB8q+w6UAfKy6hPBqkmLgReXkPuz8zemfaobnULiTUo5lC7wCVlP3enNW7u1km1Oa5uYeZnZ7mGJcbSck7R7entUVykKWjRwmMockOgxn/A+opgZ+sXFz5CqJdxHKiM8H24wK0LaKP7BezxglRBtLY43Ec1is56A8VtWDhfDOoqY33My4fbx1HGaltrYRHpsO5IfaZm/ID/ABrp7DjJIPNY2mx7VXI5+Y/mf/rVvQ/dFWhHo/wxk/f6rF2xE/8A6EK9ErzX4ZEjUdRHrCh/ImvSqT3KQUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACq2o3i6fpl1espZbeF5So6naCcfpVmsLxlqltpHhHUrq63+WYWjARcksw2j9TQB85tflb9LoHq+88+vX+dWbrTEur6RrcIkhXLKfuuM1hTJJCPlQBG+bPUrntjpV6BovKQ2cjNK0S72L5IPp7dKYGTcRY1ZbQReWW7ZzjjP5VtojQ+FJoth2vMpDZGCcj8aybqDEzSsCJcYJ5rWhaV/D1vA4AVpi6nPLc//WqJa2Asx/I2PQCr0U2Rgc1TVMsc+uMVMitkdhWgj0r4YPnV71fW3U/+Pf8A169Pryj4ZPt8QSp/ftm/Rlr1epYwooooAKKKKACiiigAooooAKKKKACiiigAooooAK4X4taibPwRNaocSXziAH0HLH9B+td1XkvxsmikTRLfz0DRTtNIm/kLjg49zQB5DqEoyFU/KBwRVzQLa5a1lvokSRfM2NH0ZwB1Hvyax75wm6RVdoumMYKn/CtrSZLy10qB4FChwXA69SaFuDMzUL1bu6lEaMAnUEYxWrO/l2+lQKwLCIsQD0JNYipJa3MoJU+aw3fLzjPStq8Mba7bpHsOyFQxVcDNS9WgL0OCx+pq4F4qhbcDPqc1eiSedfMQBYgQN7HGfpVt2EdR4Hna18Xafg4EoeNvoR/iBXtFeF6Ir2XiTSHdlZTcptdDkEE4r3Sle+qGFFGRRQAUUUUAFFFYPi3xAvh7RzMm03Up8uBT/e9T7CgCfWfEen6Gn+kuzScHy4xuYA8ZPoK4HVvildOwTTI44lZCd7oSykdevHH0rhri6nvJxcXE5kkkZ5HZpDk44zVKWQxWbsC5CwA8SA5LHP8Ak07CNQ/ETxTcNvXV5ByeFRAP/Qasp8SfE8ULF78s6DdzCh3DH0rj0LJEWYAbU/i6E4wM1WvrgPLLbxYd9qxAgnA9cmgDu7P4weKI1DTLYzg8/PCV/kRW7bfGuVEV7zR43XHz+RNgjn0IP868jYmG3YDJbaFFQXFwFM0YwzswAUDt60hn0roPxI8N6+qiK8NtORzDcjYw/Hp+tdMbuLAIYEHoR0NfIxkaNBIoOQQAynBGc/4Vt6f4u1LS8bLuYRK2DEGyOvp0/KkCPps38KnG6vB/iddW9749mkhCjybZUZupZ+OfbA4q9a+Oc2MVzIFcbvLcCXDE9c4PQY4rzzVrye7vrq/OWkeZnO444OOPwwKSbvqU7dCBw0lwkSAOZDt2nvmt9bsWMKW90gTywFVs4DL2IrH0SOa51Azjy9sS7twB6ngf1/Kp/Edy1/cWygFUtuGx/EO9V5kspXUqz6qGX7u7NO01i9zPcd8E/n0qk0/mzSy7ArNwAO1aGnRMkKbh9+UD8AM0AbsafIq+uBV67ujapslVVEShAq9Pr+tVUBKYH3uo+tW7vN9a3EiRFm+QkADJI4P4YPPuKUnZpiRZlFxpz2bzFchkuFCHI6//AFq9rfWYSissiYcAjmvCZFUaVD837wNjbxkc5Of0/Wul0y/huNORXnkEkalGGeMjgfpisqs+WNzSnHmdj0Z9fjEgXzEOTgAN3q7DqavgA59ccgV5PNcwRsqC4LP1AQCrdhrMtoH81ZVAI5yOR06VisQaukevRTCQVLXM6Hqn2uMMC23gZdSvP410qnKg11Rd0YNWYteWfFS4K6tYRkttWBmA7ZJP+Ar1OvKfi9bMt3p15gbWikjyc8EYP9TVoTPOZpCImGW4gA5TPJP6moNR2rb3IGzO5I/uHsP/AK9SO6oHXHA8teHxgf0qpf3JeBeJBunJILduOD7e1NiI2Z5oWjBYFmUZHue9VVWO0lK4xukIBPU0NIVwVJIz0z1qC6Vke1VsgsWkOW/z7VIDrglo1CY3NKoB78e1VbRUjbJGSSct6mpRIVcbuinK/XGKqOrLNbqAM7SxHfrQMt3ThIItigsZCeR6e9V7eJSnmM25v5U/LSTRoAS6hgoB5JNTPGLVykbq83CqSw2j1ORwTSAeW8pUt0f96zgOSeIxycY9SKjkcb9g+YD9Kg8ltkkaYRwwctjJ3d8k9eDT1R9u7aWVWAPTOfegCxa3jWI8qPcgJyR/eOa3Li5tbixlkQru28jHOaw9Zmi1B7R4lMTwqFbacbsGiO3nublxIpiTeBKSMBMngHPT2zxQ5KO4blcW+yzNwSMuxVR7DvW1YAOkKnG5Y88e5/wFP1tUmsUWzhRLC1bakhGDJk4JX1GevqTmm6evlu5PZVUflU0586uDVjUBxTvNxnDFQ3BA6EVVecKM5qm90XbahA9T6VoI2EZWZVUYVearak0tpbyzxIXIG4AMV5/CiwPy7jnb0Ge9XZF86BkOOnFKUVJWY4txd0cRZ6jqV1fArcujHgsOuPxrvtA8OXl/exvcazMynsxwBXL6ZYrBqEiMuCGIGf0xXbaPO8L4Azjnaa8+pJJ6I6optane6Fo89ncqYroTQDqH6iu4gz5YBHIrltEuvOiRh0I6eldVCcpXVRnzIxqKzJKwvF/h8eI/D09khC3A+eBz2cdPz6fjW7RWxmfK+oW09ndy211H5U8cqq6OpypHX/8AXWZdHMceNn+sY8E/5/Gvorxt4JtvEkP2iLEOoRj5ZBx5mOit/SvANc0y90m4S2vYZIpFLZ3Dj86GwsVoiEAYrnIbqMgVRvJi9xCMgskeGwMYPpV+LTb69tPOt1Kwxqd8hOAMnpXSaJB4Rs7YLqMMst4jANIdxjPfOBgj06UbgcnGjbSFjaSXYGULyeTxxV2Tw5rcl7501hPBEEA8ycbFH5+9dxo+q28utmy07T4LaC3jleCSKFvMkUKTzyCePc80zxHPaX+ii+S7kDxHfHm4OXzjgDn7vGR9enGXbQRyslvbxaZJbCKIXcLHzblXJLDONo5xgeo65rDuEHl4hGfqccemKu3t/JcuzGNELADiNV4HTgDjj061ntucnOeevvUsZoLZSiwkdZA5hi8yTnqOvH4H9DWTG32i2NwoBQOUq2bnzwoRtjovlsB0IAxnH0qtjy08qMYUfzoAmtbeW8YiNCEjG6R8EiNe7H2rpbuRVsmtbIeZZQc3FwThp+m5Vbvx/gKy7bWoBp8GnGD7PCWP2iWPlpP8PQ+3SiW5kvYhZQOfscDfu0KgEjtux1PNc8oynJFLQfqeqXGrLBAB5dnbgLFCowAPX/PSpGcRKcd8fyFJHEscftiqszlgAoreEVBWRLdxHnaR9oP59qlgVfvOdsYP4sagVQi8/j6k0x5ZGbPQDgKOgFVcRrpegcj5VHAX2q5FdmQ7Ux05J6Aetc9ErSNl32Rr95j/AJ60+e/3L5MC7Iu57t9aL2HY0y2L1poSSD+tb1hfgSJvBx/L+ormLOUMyq2emBjr61vWSKcZJPpXnVF72p1weh6r4bYOqsjZBFdvB9yuA8LfulTacrXoEPMYIrow6sjGq9SSkJwKWoJicdeK6TIZNJ8p9K47xjBpl1prC6jjkmPyxjHOf8K6qQgjPPpzXnfjnVorbUEjlLeVAoBC9i3P8sUAYH9nxwab5Sw4gxwqnp+FcZqVsIJzsIKkc+tdw9/Y3Vt5lvcqWx0VsH8RXJavMZUOQjlTwehFW9iUYbXMsMomSSUSKRgiQ5A+vWgTXKQLcJO0UHmMqIsvKnrwuc46c1XaXLkFMjvimoIo35PPUE1BQ4kyEZJNKITjNTxIpP3lqz5SheXBPXFAGVueCQvGcHpmmAF3wBlj6j+tXGUMWBHfHBzUkNurccfjSAqNbh5BtGCRypHQ96v2kJhYE8dj9Ktm3jEflzN8p5R88qarm4SMtHP85XoU6GmAl3OEUxrjn0qrE37sqeDnr7U9mEjZVAo9qbhc0mwAmmE4pSuRuzgetN2hjw4H+9wKQClyQAegoSNWkHGfpTQFLAqS/wBOn51dsxmUBlG0c7R0oGdl4O0CGQHUZYiwYGNFYDBHdh/Kukl0O2M/mCIBcceXxVu0uIHtlWFlUBAFVe3sKmhmZ5FVnIj7jGKHFPcFJrY1NB08RAEP8vcY6V2UA2xgZzXO2B5AJ6dAOBiuihIKDFCio7A5N7khIAqvKwA6ZqWXkDngc1QluFQHOSSeOKoQ4qCoOOleKfECSU6tdkcnzjn8AMV7DNcvgeWpLD06V4949S9h1KaR7YhJH3KzD5WHsfWgDlI9RhnUJcQRkgYDAYb8xUd66rbbotxB9TmqbNbyscq8Mn5ikcHy/L35FFwsZsrsW9MUCbcnzc44GanktiTw351CLVxnpzUjJYrhAQNhH0rQ+1AIAEPPpWalswOSal8s/wB/pQBb+/0yPwqfiNM+YF47DJqjGGA+/UoQ5zgk+9O4iwbheQqF8jBZz1qCR2dBHwF6gAY5pSABksAPzrWsfC2r6rbpPb2UnkucJK5Cg8E59ccdaAMNW3cA8jr7UmMctwc9K1v+Eb1hC0i6bckbQ3yoT+Vbfh7wDf6hJBcXyiG1fDBDks4P06fzosM4ia7TzlhX7xPb+GnbFByfmPvXrU3wl8P7hHEbxJMl/N8zJ+nIxj9amT4a6S2mxRESPcpy0ocqZOec9QOKOViujyaGOSZ9kUbu391FJP6V0GkeFdX1HbPHbPHCH2tJJxt9eOtey6HpFtpdrHbWlosbpGF37OW+p7mtZdPZd0ifK/U5J5p2C5zUWhxx21shkD7YxmQDuBV2S1knMRh2gYywI61uQW7KxTG4HnpU8GnRpjg5H6CgRVtLZtsYfOQK2oU2oBSRwhaloGMkBK8VRntyykgDOOhrRqNloAyZIZ3RsMqnHygdKzpbCeSOWG5SO4ikXBRl3A/geK3zF8u0AigIVXaMn60AeOa34BthIzxyfYmOSEOXB9x6Vw2paHf6cx82MOnZ0OQf619LmFZJAZIUIUYBYAmqt1ounX8u+6sYJSAQCUHpihoaZ8uuCrlWUhh2PGKBj3/OveLv4VaHdXa3JEqgOGdC5IcenrWhD8OfDEFz566XG5/uyEso/A/Spsx3R887TwcN83TI61YbTL9IPPksrpYiQA4hbbz05xX0w2i6exQnT7b5OVIjAxzn+pqWEyO7LJbeWoPyEkHI+nanYVz5/s/AniK5szcixMSEZQTtsZvoDz+ddFZ/Ci+mtYZLi8SGSWNsx7MmN+wJzyOucV7JLbrKVJjB28jPanGMEBSDj2p2QXPPbT4R6Nuge5ubiXy0AkjUhVkb19R9BXYQaRDaWpW1DJzwCxOPYeg9q10h+XpipBEM0CMaHTQnLjcSOpNStZbfuYGRzgdq1tgpdgoAzo4AONpI7+1DWag/u9y5PIFaIUDtS4FAFKK3KHpipxFgetT4ooAjWMLTwAKWigAooooAKKKKAGlQab5QzmpKKAI/L5pTHT6KAIzECMGl2YGBT6KAIxHg5pxQHqKdRQAm0UbQKWigAooooAKKKKACiiigAooooAKKKKACiiigD//Z",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAIAAADdvvtQAACeK0lEQVR4Ae39aZBk2XUg6Hl4+Bruse+5175XoaqAInaABEkAxIBsdpNjzenhSNa/ZCaT6b/MpB/6JbMeyWRSy9pkplGrpZ4RxWYPuwkMCIBsEiCJtQpA7UtW7hkZGfvqHuEeHh6u79yXGZVVKCALAFFVtI5XUZ7Pn993l3PPPfs9t6/X6+WOriMI/LwQyP+8Lx69dwSBgMARAh3hwS8EgSME+oXAd/TyEQId4cAvBIEjBPqFwHf08hECHeHALwSBIwT6hcB39HLhCATvMgQOer39/f3eQe/goHtwwAjHEtfrdj3r+H5wkOt0Ov5RoNvtxm+pfPegG6XT8/7+/nq9furUyULhvZ++974H7/L8vZvN7e3t7e7ubm5urKysLi0tuzY3NprbW82d3Va7u7vb6uW6+Xx+b6+z32nDIRjTl+vBq91Wq5vrKxYKsKdUKkGUQtG/xXy+0F8o9noHx88c/8P/6g+OT8++m8N527aOEOhtwfJzPmw2m/Pz18+fP389XSsrK4uLC5ubm+02XNpXab6/r1gq9ufzsASlKZertdogGtTXlysU+jvI0EGnr68PJvXn+4Pe5HKlUrlQNE15pWBPX1//fheS5ba3G7npn7Off4+vHSHQLwrMdrs9Nzd39rVzL7740quvvXr9+jyqAwk8x55S7b18Hs7gPD7zfb2+7n7wKj6koDx7u/hRokMo0R6Sk3VIDe5gWKlcgX35fM7rfTl8rzNYr22srO3tqv+9v44Q6Oecg42NzQsXzj+XLgi0vb2z197L9aktpBYkBMtxs7+/B3PyfZSV+C0Q5+AAuqA1yhBrPCwWgz95glP5qdVqYV7lchkOpSf9WRdTtQe1ek0LSJ16sufv7ecRAv1s8N/c2HrpxRe+//Qzzz733PLykslO1CXfy/XyBShi0gNROqhJp1OpVEyzJ8rAFX9+Q1fiL13QCsUhUlcrhfHxwZ2dXQ/wLDQsFzgXCNdJZKnXl+8d7Ndrg/hYZ/8g19cfFOx9cB0h0DudhLNnX/+rv/rrp7//9LVrc61WmyiDcGAxRNp0wQjYYFoJNH3xJU1/oViESW6zJxDMc6THS6Qc/8ETz+BWob9Yq+UxvkR7Eh3SQn+QnxB9+vsKxUpfobS1tVUp1xGfGxW+0+7/ssodIdDtIYu5fOlLX/kf//2frq6u5vpz+Ep9uAxH4E3GifAdAkp272EgSSBTD+r0J00KFVEEYkEd7SFGfbm+/d5+IZcvFFGvrp9a7RZ8hE0knoHagDoxPeWjtr6+crEyNDpOeQsEzPV8auj2Xf/llzhCoJ8KY3SkL3d17tr/9Odfa+7sVAaqJs6kBlE5oHbvIzRwB6UILcv3/U6uFyiSXb0e1YktRx30pjDqJMIRvMyjYn+h7wAekKlz8XKu1znokpc8K5QK9VJ9t7Wb7+X7cvlymSafbzca3vMHtVClpKLdbOm9+/cIgW4Pe2t9YGBgoz8PdZLFbx9FgRLwBl2haqM9rkR4guqoEUVxoSKQJuGNJ3l4Ax1gWfYQpeqvVHCu0ZGxQrmY64t3a5UK2tVhJurut3db3QOKWIXqRp7GzVC9rHL/ksBv3/VffokjBPqpME4Mg0Q8NT29vrW+vrIalISRBvHoCzMNczGy4kniXMF00vNgL8p4rvb0U1+/Hw8O9rr7+WJhZHjoxOyx+vDgfvegsdlEdfY7e1vbW8PDw41Gg92oRRTabcGa0bFxuAuBmBB91WSwtmiGUHWEQD917t4/P3b2Os3d3XsfeHDx2vz8tblcu4V7IULwg5qNnJhakm+iK/u4kAmGNEF+EptRTAHmH3LSyRNnHnj04Ympqf12l1H59ddeu3z5CtI1NDRM8xodHmntd1udfSoY03PYn4tFcEi0LOOGBwRq+JQE8Td45XsIqyMKdHvgE4iRjr6D/jN33XPs5KmV5eVmY2tvh1C0Q43PzIbQJbhYDptDkHrFYiCWKwgFMSffv9/rGx0dv+uue8+cvpuwvLayvt/Z39jYSkbCeFdRXUF7MDIo5TVYB4egnRpcYYwmPqcramaNfh9cRwh0+0nodLq0aCrX7g7zXbdcLPbVBndz/e1ON9dum3s0plKpDg+PFiYKMABK7TQb/uke7Ic2Fi0wLXbK1erA8GC3s/f008+Qxwul6vZNeyCrkfpp9ayR3Q6LYn+O3MP0nP7SfYhQ/kqJHKkxodTtO//LLnGEQLeHcIgyIX7s54iu+AvlillPOHlfH9wxkQqwDFWr+4NDdO1x5GFtdWVjba3R2O6iM337fGEIyeBgvd1qff1rX1uev04mGpmYhnxJpiGGk6YQnvz+XifRnmKvr5esRBwaocYRgpK7nvgV5gAPbrhJbt/9X26JIwS6PXzhSFbI5MEaUw5hfPpqcskjwatwub09+AEzXMQmcjCs6qIoB53qQGV8YsqDZ595ZmN9XRX9vdzq6uLAQE3NwZ8o/wc3LJDqgiLknKTlherna+BNYHEvGsXMAodu3/N3ocQRAt0eyN1eF970qEz5IsOxqS2Vi7Ch7J9CuZdrwIEk1SIovOn7pJjtra1mo7G/t1cu9M2eOHP82MTKemPx2kJ7r0W66e0fTJ04wcW6trxy0LffOdjv7xQKff1MQXv7STYngOcOVE4Ggl2BkpgoshPYGzp9dt2+67/8EmGTOrp+OgQy8ZYoAz8wFFOIqQQ1olvTkihYgRSs0h3UQhnCtbif7e3tgYHq/Q/c25cvnzs7f3XuOulIuaAtOcEbxdHRUYSKPo6kYFv+oAv9DsbAj3Kp1F/oxyGjlRQ4pkiGPYngxcdP7/a78+sRBbo9nFmYzVwwKrEUeweEjxB7QqINwzF5CIcxm8GJul1S8MLCQnu/c+z4cW7RuaXNDgWr0wkPfQ8zKpBtMhTJ99PUwpSUPBN8sUnbCoN1PGJGKgSjymnBX/aQ055CF3agYHy37/m7UOIIgW4PZMhSLJeZn3vhu0ApDlLgTrgjkBwz3Z8vIj9oD6U+/GX5vvvuf4DXU9BFvEL8RlhC6Q4UyeFFsJEQDE2ggf9TSGt+oEYwJ3THZs8812mJBs+Z2useRGRQH5pH6jJfxCcvIlLvCwp0xMJuj0AhHbdbGY2BMb6iPliYi73HTEIdl5/W1taQj/vvv399fR0LCyqV1LRDdhOULAyDfeJTb5WC4QKRGf9TCYqTmX/UGQh3wywpHDGeezer4X0iRR8h0O0RKIerwIOQopGhEHRMZAQnF0tQCHIEmuRye632fq/9wCMPra1sUMAwoMzHobwyLnOfXYkphTIFKbMnqBTzkjK8pQgNmuZeW3sk7MSsCEKlYhbbGh0mYydEeged/yUXOUKg2wO4tbsTVCe0oaA6BBHYk2QUAYRQKXwLZGhU6tEnPtTi1drcQGCUuCHBMCX3Qi6+taX4NU8qD9zyHAIReMLIFOwLpSFUJa0+MSsx0X4tRkOBdqoKy0J68dY635P7IwS6DdjPnTv//aefxpLW1tYVxWjKFWFkZZhEeg7DUGJFhOep2dnjJ++4Pr9QKNHzy2J6Zo8fe+SRR47NziYNPGgNtHCF2CRGjGkgBCq4FX0Q1qpK9wKHICXnmgs18gjqwDLsLwnsURpVs3MjXnuvryMh+sYMXLhwaWlp6fTp0/V6zWWu/ECG+df/3b9esLNiq0F7yh/0jYyPFKuliAGierXRiWBvB/Srg9yDjzy0ub5SKRXHxqZr9bq5h3XX5sTY75SLJTGIECBjZwgMyoULxe4MdsIIho0wn+3tDVgFKYM5CqmGW70cbZ6YrSd5ZEi3IoSxQ/ReWQmEfs+vIwS6MQUjw8Nbm9vPPff8ln+2t6vV8qc+9amR4ZG5q3Pr25tEIJTg8uULzebk2NQEAlPIFzgokpAbNqGh4ZHmxtbY2Pidp880Gs2ttY2V1RWBGRvryxQ0FGV8YhoBQsBww5Cg+gsRj4YTJfqjHg+5ZyFZZoDWHD5VCBtBECqfGf1JQlOoY8uMkMnG+N7i0BECZfDvjY2PjI2P5nKPwJ6vf/0vv/zlL3/729959JFH2/wTu62p6Sk87PLl89fmLt//4CN2c5FyOE2ZmxEH+2x2dneuXL60eH1xs9FEVIZGhouVcmW/0pjbEk+4t0fI7k1Pz9pbyDgk2J5Y0wkBCGKEMEObp7bndwMzQsZigM6YHemHQH0DR2DSjXBErTeaTdYEjRwh0HsLgTe1fv7c+a9/7S9sCCSkzM/jXYt4R61S3VzfnJ+f291tzEzNtHZ2250WN4XJpiJxdW1vbGIydlRAKmioRvrTTnt7Z6cxNDikNiRkcHtr6P4HG/z5++Ib64gWJT22cpCXyTR9XX4RdbEZ2tOTyVUh85CxaP6JnwauJSHKDSrF5rRvs2L5Tf1/978cUaAM5iHxPPujF/7bf/EvbNbBzphkdrYbNpRWawMCBReXlu25mZqaHhocQ5M6u7vl/griIGxjaXGBC12oRnCZvvz66rKJhwH0MgLw5OTktljD7c3hkdEoQCjuDyMQzoQmoS40LpyI0IPNaRRz9OdHXg40SK+8FcQoFLXwquYIYqqwcZHVQDT1e30dIdCNGXj6u9//P/0f/88rq8uVcokR5q577j5z5g6Gwq987avNneb62kqp2Hfq5Kn60DiZd2d386C1t7i4uL65zu9O2mb0O37i1O5eZ2ZmOqSZxk57p7mxvrq11WjttUqVaqkysGM3/G4LhqAo0OdgvyWS1fYg2IAgwSVmn2qtXihXwpdx44Jmicf5ml6Kfz3KsYa3GIrea/zJHSFQTMH62vr/8G//B9LO6NDQp3/t07/9j3/3xIkTnpvv51968ZVXXmnuNvpy++fPXSiV5o/NnMgXKF4HU1OT1YGBxeWlFJhBjB7pbm5XKgNEE3Sj0923U4dxCEGqVMpLi9f32rvt/Va1NmrnhThrOEeD8ys8KPaHjQeK2GoG/zLJOugNVArHR+BTJjIHqcxR6AS4ddPu6fj+Hl5HCBTAf/ZHP+IBNc3/y//1/+qjH/vo4XwgD4ODg6JWbWGfnpkYrI+srq1du3610dgw0xOjY0MjYyeOnyL2muCNdaE+6+1mAyoM1GueeA4/IERoXfleY2uDh+vY1P7jj/cWVjtz13aV9FvoZcUUgd/rEYC8AnW8iyrha/hi6GVhcCJrhy2AuTpwK5dtvz/s7Htzc4RAObP+J//u31F3/jf/u//t/Q8+cOs8mMK7z5z+iz9vUnaEXaAQtmeEwyu2CO4tLC80W60TJ08RdIg3oZXvk7A7xUIFvUBdmAMZjAoFLvQw5XjIMbG9mb90oT0wuL/X6uQjUUdgRrlS5SJxkznX4AfESuoY1NFupqnZGc0wFBHWYa4WXpJeubXD7/79EQLZeFX+rS/+F48+9PDJM6d/fAI++au/+sf//k/Wt7eq1QpeY77Hxkat/mPHjuFBciAMjoyUq5XmdmN7e8vr5j45QeEY7tNLWhQzIz09roNepzxQOH4Mk2vvtERYh2XIW8Rqyj/vGrw57EMQrqBdsefVu5omJ4X8o5Vk/j6SgQ5h9V7e2Hj1hS98QQ9MTZIw3uiM4J4f/uAHo2OjJ9onr12bh0NDw0N33nkXhxj54/jJk+sbkftHsHxja5vehS4QjhILgitCMyIMCPUgySAbwZlyPVrXqVMD5y/H1lJyTTICHfBj2OkKgSAJpBEbErvm+25EDkGX9K7eKS4EjSKWF0VN6H6jr+/RXdDPoyuDwFuwx8Mvf/lL/+pf/ks5o0ZGRu+8805aFGFoZHTs/kceMaOXL11k5qHDb21sEVZiysky8Rcujk4kdsmLIuSkCEdW6N7+wiGxtMx1FiGqiX0hWnlaPCOQVwUsQuNUiawM+0G7YtMzJhY4FNp8RD+K6idER4Tkez53Rwj006bg7/7ub/YP9ibGp4QnSwOVcGj31VdeGajVH/3QU+jQ/Nw8AmZTDkEYfZGxA8dBJ4Jhxf9YGLwKv1k8cPX1hidYkgrytAh/hSv8qhgXcUc/0J6keN0IXfXEWz4xryBeSsc/GZ6HkEQR8/C9vY4Q6KfBf3p6Jl9gmhliHIJDQ4PDJ0+eXFte+v7ffJNg/MQTT5Qrhfm5q2E+FiAW7CeimDNLjTkXhwgHYgtQH8nX9IdU9K1vvf7iq/0XrwygWdqGDlCBIRFP9Iq/0LUiDm0/iFF2Bc6oJF4PJpYisrWIRN0s8Z79e9jH96wH7+eG/+v/+g8/8PgH6Uex8OMKP/kdd961tb39l1/7Kmf7vfc9WB8cWl++Tt4x+UmmEQDdhgH+Cw8EiSUyaXo9Jp92JaZ1u1kWTo2NqRHOJcE5RO9MoFbOH6IDMon0JKoT37I++Bq16cwRBXo/I0/07fiJE0888TgPAywIsiBusFq//6FH7rzrXkTj29/+1nM//AGJpz4yLvEqNpTKdCLKOTZ5BUEJoTeoTLgjzHml2Pern7zroftzg4NN3jTOEDpgtVqFKBm/g1Ju4AdylmFM0Jw3rsQXE3tUkuL2nkPwDaXxPe/K+7MDW5ubcKe7H/kSTOVOc5uKdN9DDw2N1M+99jqbEO9HrV6dmTnObA1zRINFOWwrTXNgRpCUuCAUe2K1XJqdPXjtfJvnlC6FOFHiEm2jgpmOwLj4S/QmiJabtCUEFiXKFHQo1S2Rw3vPwo4QKKbqp1zN5o5f07YKlCgyA0Ga2VptavYElfzKpQsbm8tbm+sTo5N+HRkfk5/FDRGGkSb2mx4KvcF5ctVKeajKrl3mnk8mwR4GVuy7keIjMCTolE8idlAXNyTozP6UOpk0MSgVIdqho6WH7+XHEQL9NOibOQbCWPp9oTRBCFQEyZk+NmuCoQv8qCxKElVeX10dqNdnj83KQqeADFFS8/KBiMfIhJUktfS1u/uLi92ZY/vtFhPQvkB6hA2BgXPh9grXWDjnM0Z22DNfs/vEE3UnsCzCIN8HLOxIiD6cpre5kR1BJhdsiDVGtgPqOYIi1fz21gZ5ORylxb5h6aJGRiq1ARFely9dllBsemoSqgk2sx0IzfIKDS75tgrHpkcHRwdL1Up/gdpPayM3F/ng0BIVIj2wB2alzxsf0MUdXAm8CeSJi1yPgTEfvE2n391HRxTop8H7W9/6FisiM3HalRwCbHCx7r6jC6ZnYjMhroafzExPV6oDUkWJZrx0/sLAQIm9cX1jIyhHX9/ddwe5wtOgQbO1t7LZ3mkL/SkFNpC1vZ+J2DoS5sFoBbZwYbg/pD0Yma+sSrDICxESW+hnfPppvX9XfjuiQD8RzCbyK1/5SmdP4F/Mk4k1wYzJ8KC1s10ulORIYCbmTyCKSL7x2ONPPPjwI7SqzfUNaDE8PLTX2VWC3D05cxyxqQ3UmRDPnWsuLgiHZaQmQZN+ECL1Btr4E+GIOcU37SUzdFiiQ+CJPYeh3YUtIDoCjyK1+Xt9HVGgnzgDQp5tT95t7ZRKEeEVtCGl/cbRxKrSrkqFMspETqLSm3EXGUhk6tylC+fPnUMhGITM+EBtkH0azSgVK8emBu65b0TIz3MvNDQcErRyPB6oS9pHFgK0H+BPbH6NTRv+kB9b5JmL4M1NcSiMRRF49F5fRxToJ86AuZJAw3YwejuqE9k39kLmcNtsNq4vzJtSBj/nXWTRYYqxJpNORsbHBZoJMCIPVQeq41MzzWaksgsZqidkrBTZnkMAiosexeSD3EAmvjHoA1GD5XURvkh3D1GgrK1hCms90aBkFwi3/5EM9BOn773/wbqfmJgkrC4sXucIQyQyu0uSaXuvnzt/4njLVo3Njc2R0dFmY4odiM7Fh3r5/CW9R3Q6+63p2VOrq0sb62vVcgV67e8VhgcPFhrh8UjkJN919gqtvBdiDaQK/Ahu6QqaRMTOIsyCACaRCNZiat1AP/QpTN6ZyfG9gtcRC/uJkMcyOLlmZmbOnTtnPtmLTScRx8SjOdT7l198zoYJz5xU0G41N7c2be6hXEMD7E/ssy2BO42mbOJIC1rCoD01VZ2YKM5dbcBLDUOPsDSmy9dgS+nSBK0tuTgCbf0PqzyENX6Pkj1hIRH14RK6+BPH8Mv/4QiBfiKM02zlxDjLbYgejI+Pm0JSkQQuttRwcp0+c6ftggw+WZZnAWWCoLEgSDE+MVatlpLajU5EZBB2g1RUBwpXr+6LHep22+rHtnjJQuwJB2xgEFzB44IaZfmsIhk0qdk3jv28TdHM3MH1koExNQ2B3sutPUcI9BMRyA+cDFSkEyeOLy2t2PjMBu0h2lCvs+WUH3jkA5CDNx4OJJNP5N8012GH7u5nR/VQyPcOnAKmIIOhdHbtDfs4RLb2uhCF8gUthA5BI4dwoEWlSuy6x8iIXBlBCrQKBd9fCKy+qCesk/l8c3cHYnr4Hl5HCPQTgb+xsbG2vtLpREy9ROBLi4sYk/BnCIQk8NC3dmxSFoLIrc6xFZu8in1FEjD+ElQlC4BPpCK4D17Vl3v1FZXUhsfG0Jws2wY8ICxDGlJNSDPxXlxKh6YeqJL10PdAGlf6zvPflUuPsP0TB/Cu/HCEQG8PZlbmP/6j/9/T3/1eY3d7YnwGr5mamak2arJn9rd2yUNIRnO3yYJjL72YMgiFOET2uh4JKUKn8ZkwHYXsAjmEGoYb5OFH76yWap1egexSRm1KlcAtUURwjtMjHceBPUGbRHf0Ldl8Anmimnh+eAm3ltFzz4bYaFm5w1/ezZsjBHp7aP/oR8/+yb//44sXz977wCOjY5NOz8U5BmQ7KBZ2d+xZ3abNr68uVctlNiGZGMjX+JrzCe0zhBykXrQhpBYESWiYCY5ECbnR0XJvf2N/t0eKKpccgqFI0BpkJphfsKf4mpGZTF7OCkCyKHSTHAWhgmdyNu6/x6agIwR6ewRi4cv19k+ePMZYjDIQZUxsMuX1IAvSsb66+OpLLwzUanDLbtQ9OHPQlfe51LUXrH/X/vl2C0YUCND70iLCoq6UHsNDlWZjYWdZIun9oXo50CUfYT2wBMnCDTMEgi66BYEy7Ame+OYLZUucrM+BC28/gHfracZQ363W/uG089hjj/7+7//TVnNPTLx1L/Ir6zs8sN0UZkzNzA5Ua4I92js7w/zyoxNSJrBZoyuDtRFnMVPvw37tL6IS+3G36kBNWumRsYrUPuRsFcKPEJeyU8FiU0c8iYcJY8KOkAiPJ0F+oiPxCVXj9iAPTe0Gief+f4+uIwr09oA3c1KAcY7OHpc9I9iLSUUqXOaP2NvXyY2MDlZrle2N9bA+D43eNNjkDkrdVpsXzNUT1uEV5iJbvIaGaxInrC5KKC6YNcI2FKCctVv71YoY60CTjNQEEqVL5w5RRweyvgYxgmSxH7+bbUZ7+zG8K0+PKNDbg9l21Reee67RspW9Hg6psNCYQUa9iLwQG72/Zy/zJvbmSK9L585vbW6xGIlOtcGCRBxzyxmRNgSG5CsgBD/qy7eafPK59n6cAK82khAkgiOBG2KcA1tuUBr4k90fYtJhR6NQ0KoQv5999lm88j2kQUcIdDgvb7p5+aVXXnn5pdHxCa4DHndok3BCvHNY/RAb/IcFUZowJ/lwdJ595dXrC9cRGL8yz5CyM1oF6cKoE9vE9msD1fJAZX2r2ZNvKjyzLkeD2UIfUbDYUmBRuiBN1pvs6+F9hlUJfbSPDBUWFhY55t7U9Xf3yxELext4m/Cnn36aRDwwNGw7D7Kz2951wMr+Pt9Tmui018LW0Fa7c98DD9u0c+3ShYuvv0agHp+c2pZYSBIhxqEw0iQU4mx34nLZuZUb+fxwt7tJhGFV4nOFNNhlFEpyj94EfqTLzSEm+TW79zCeB0/1l4OXEYv93l1HCPQm2AcNyOV44F968cX60Ojm1npiR/uxZ1nQaTcfYciITAhCbmIn6uzMcZxroFY+9/rrC9euoUkiQHa21znqAxPwGsTCXh5Jnsv1vs5uq7HE6MhaxH/KXQ/B0LZDRFFtpoJl3YI3bmAM90jUFbG15PkILAtMjn1EXXuMjr1pEO/qlyMW9jbgdibh9etzXA1+Y4dO0cdmFuKEsHLjD1vqHoj3sBs1cgWdOPH4B5+amJrutJub64srK8trzjzI9YhQYQGQ+bDYf2p2sFpy0qWD63ZYjJKvNgSdjPYERr75OsSe4FywKDCJpMSN6q0kWEHrg14jJXV486vv3rcjBHobWM9fX9ja2BTlY+v70rKUdVxdkZA1+EYE5ITu5CIlj4yMIBGQrNncLVdqvGPj4yNDdbEbQVrklj9+4nS+v8SIXKuNvnh27ZmX82cviEwNJhUyTJJ1BBSp7RBd/HR4D72gjV+TgKQp7lSx2dpGi6BVMBCq4tuM4d16dIRAb4J0YEgut7C83mxsX7t62SmWhNuNDbTEFIYqFhMaN6YYEvUG6oM4iD0WPUfldvZr9cHNrR1GQhnIxLpibI7xrg9US0UC1bCcmCsLu+0mF0cwJSGKXBywp9vuRMD+TWvhYYcS9viWmgpvLP0vNgq15XeViyj0Qn85yYQPX3n3b45koLfAPBBk4cp5xxtIaShmVBTHtblrZB3UIva6R75xHi80I3CoXKru7GzRwiqlnk2C6xvCgMpCPij6Y5MT8pTBKsXqg4PDo8XHPzCys9386tpOewMjS1e+n3aX6FAIO1FjEno8yVhb9iC4XMbgHL/R6YTTNZ0CThRybKudaG8Zw7v59QiB3gbalCnxGLWhkYGBQQdfTM1OXojsiKVavYbzcH6J75GHozowCgvkEsfTzCmVam19LTJH89UfiNbgKO0/e/Y1JsRSpdDN5bc3Wu2m6ZfOF0IEpvKO0aViOw+RO2GQhxgW7HHdQKwwQrEi2J8frcjxGj32fohWohLzDpXCTMUWxfN3/XpvWn3Xh/kzNEg0Fg5IRJbdF6foy5cqxdLMsdlLFy8UucH6nbdcGxkelJFzR8pMETkYSgoa7K2gF2yDrYjtyeW2NjaQHzcOTqDuH7T71jftfS5S4ARSB/KElpaMlIFAPcKEqKAk7oTalegcLJFFytE/LSRHvrywP3GLlGMvh0ybUA4hTAaqIwT6Gab4l1uUcU+ks2A/AnKE+JT6kRxBiWNjY/LYReDGQXd5eWOn2SyUq2fuCG1dih+IwBHP8APt5KFP947xzu21JR0XjciK2Dt9qnjhghcRIRFFlHLogjXF4VEoGaRJmlaMzn3Gy0SP8LgXCuXYW93qDtZ6hb6DTqsI8QoDURLCsSexeyeVMZ68y9cRBXorwJn4qgOlmeNnbMfZ4ynl72427MkYj6COa1fnLqINoUX1xGYMzpw45nQwRfJ5IczJUGN/xUC9UGiL68BZnNYds5zbr9bLfF7oSDfniWRCaJsrdg9GDxChEODRlGBtsMc/sroibs6Nqg9IWD60tJ7/wGPDo0Pdzc2+K1c3d3bs0xA0ktvdkW/6PYtLPEKgtyLQ6tLSbmNXEiBEaGtrhYSRDH29bjU3OzPTDpTaNdNC5cfGpiqVWq2+z2LU3SPXVEhO3FvMiLwfLniAgO0JV4wkC8Xd1vaLz4lI3BsQtsq7KiIsKV/2jGVMC0plhMdniMbd/YFKdXy8fN/99W6ntLK1PXd1rzlSvPN038RY8elnYKh0sN2d5i4rw1uHcfN74OJNeuZZ0Lm/1+sIgd4EztfPvvZ//5f/17n5xQ3q+E6zWpFVczBJOJyj7M9dCchtYQ6VvdudnJRtFe9gSix2S8jNHo7kG2+9471TpGHeSS1mEJPa3GRgXKO9F/rKzj9FxDjOiMe4XrbTI6gPMSgChPoghI0fw4P1yYniXXcNNxu7G+vdem2oubu/0ezOL3SeeKR6113dl8+G9C2SH7ZNTE4GVbxJwDJEVOHhzSEaJRS6gUYZPv0iWHVkB3oTAv31X/zlcy+++tprL21urB0/fpz6HQFlsfdY8p6+5k7DFDmOGakoVauT03GSHFoS6hBdS8CYvHNxGk/dF8JR236NDgIQuaIbjfbzL65dubJD945pdhpGGANsZHbsd0TUh7Mi85CQelq7AwPDlWr3zN2Dy0u78wv9O506QYfpoMiJkSu99EqPajc4FM0zeBLaDIM4dfgHb0L1D30v/vGRcAlh5KMjM7UPhBM49yUtDkgckZPxl/jpm0Bymy+/dAqEBTCVovs+3SPs1mulUh2UeLBCvwFbSdr3HbFOIvCTBX2bLv8yfxYPNj4yuLHa45TogwSdbvJlQRuTdwBJ9tsdWX+3Nob6i7HrlKRjDmIFh3MBjoVF0CiCwiRCYv7iUOdIZR9ytv2lqeyNnaZez8RnhV2JBkksRPoGjO6dp+qjI8WXX9qzfUyOclVpJclMB7vd/mvzHTGTfLSdvZYU+aCiAOeYf0hTehtsNgQsGMx0CVniISwNxU8QQHQx/rKOszLEGCKlWiTDf+cw/ntEIMMPwgjb19c3oEvEQzz/wtz8PHK8urxAb202BVLFyWoQKF+IQyHGRsdOzB4XCLG1uXrHXXcw6YoldbqAfVUTExM29U1NTYjus6j9vfNR3VIyTcot34Po3yIT3PJLTOFvfv6z3/3et559dud0VQB0LOi0a5QUFInrYikfHAgDkmV8mc1nY21ocESaqZjyQJhMtlYuhZ6x3CSWFNmf+/Cytp3RCbEi7NC8QiXkIAQg79lemE1grp/TVjTj9HRpYqp69pUtdUsbHBvCeL6CRMAJ05xfW2ebRh/72s092Rr9AkV5ZqP5uMKYpLfG6wVUisWbtgdnWAsApaChFKKUeXt56wwhloEsaendKBnXbWSmvzcEAp2Nze0rV+a///R3Vtc3282d/nL+ypUrTtoyEqOyCovQRmhVd1/AsP/BcXPbaTY7MGZhZX2vv2i/5+rSHHyiDMuo48WJ4eLw4Ei55mP82InTZNuhoTrrMNyiZqcR3vYjaPgbhd4kVILOIYZhNQXHDF69du2gr5/0Q4iGQLGS/fmg30eUWHdnt8WeJ2r15R8889gHf0VeqUazkfaYxgzwM4gTssgTJYjD3q0T1bTDOBmbdTyRFRqVIlK1d3aHRkf0IPvTyTgbTC7p/qJjgF4/u9toRoo8r8fs9rqbGxu22Y+OTNQGh1vtSP3JHwJvV9dWBLeGKTG2PSe8R2eCMUW/4y6hfgdARULmczRG/fOQzy5hTB6vDRIKjfyermRyj/6+Abq3u/t7QCCAXphfePrpH528655r80uXL13pL/UvraxyAg0Ojuw0dubnr83MniR4Ou0I3QdSa8OWTCvG2l1dXy+WS2Pj4yTPjc1NR7LxIJWrYeXANtaaneXGqlKVwqWB184Pfv/7xFJHuD34wIPY35NPPvkrTz3loFPYmY3O0rv1Ji2/eJIWZdzcWFBB7QN7oEVANa4Ilfj+9767tLTsmFyVG1fIKxEUjQtEHQCbzQVmfMeZU329lZde+IGTmpGY69evi+kYHhpMeNYJcnDjPMrUMp3cHueEPXgWto2gompgcmO2Ug/cQ8F4sb+/0WT66WQMPehJN8ccxU45OFBcWpibLTqEhTnRZsXokvxorcZWqdyf+BOkdz75HpHff1qJPgcGsUnuBboU8raRKFEXbGmHdeRE6+9YNEGgYOCN+KTghjkZrqFpUNcMqj/++Qsh0G5z5zvf+d4Lr7w6XB+8dOlyY7cxv7S6I0yzuXdgRy8Rkck/As1xfj08qDppNMEncm+HCWOfpiomqrXV8IPltrW+alohEOs/EZPgKo2pNUiMEP/QbLWR8sF6vVzbe/HlV9q729/+znf/L3v/7Qc/9OTnPv9fPPb4B6jZHAiwAsu5Qcl9CUDcwCtYEha6WJgBEVPV7XaC9YddOC+O5/z5SzMzp/ZM7F4sXJu59M8iLDLg9WL7KVohKmhm9tjg6ARx9vr1az/87rfuf/QDOryz00pZ8KBFixofr0fOjT6pxMwB9T5YCo8Z4sTvUR2IZAzISroCddIV/e0hDN1TJw4areraMiEJihh+e311pXSwdt89d/z6r32qv1T71rd/0OGTR7LyhbXV9a2ttYnpCfV1WjtRZdeZL337vY7QfuyLScrA+3OdXre9i7DuFeT6bDVy0hThY3pEJyiVq8acgiqZy/u4/xCpsJMGqLCzt8ehnx+Brl6d+7u/+9bFS1eotYNDQ62d5tPPfOfEnfdAjaWFRVRy6NjI2uba1csXTWd9MOX9jwg9kqhMOQX0pljqczr28vI6h2JtaNBiAGjidrVSR0wj/1KOnc3cOuUPQy5hfjRmfASoJ6cmF68293p9u53973zvey+/eu7kyeMf+MAHHn/88fvuu296aoo4SGCHH4CS6Hd8gkUSImOvOiSCRpZ5mjzZvosOPRVbYwGEEJqQC6bpsoBDbe6bxZ5zTygB+dOnzvQXKoPVurrRA8k3SC07u9sH+0V+h1DC0ykWlm6s4pQ9CBBSIqnQtJKUHUeoZA4sHchWtlaDZCbr0ehoX992dWVhn9Rom7xcVaur87PjxXx1eGhgRCHGcaKCFaGnQvevXr02XK/sA2tHF+Tx3EGkoCy6E5RI/539219Y3WhgkBPTUxBLxoe+QqXRZIdEyVgp9lC1XLfG8M1/I+gkjuJMXcvQ+8fJjyc/HwL1XnjxpW988zsOtH7k8cc3N7awAUJ+3Ukkw8NrS4vtTnt2dgpa2HdimdcG61uNnbrwzTgPi5orQc4OZjw4NMghMDQ0BILQH5pzNpU6GLQNU32lwgBnDwWNqIiaRXb2vp5V2O4cjIwMI022ghLGrZJCqZ9u+trZ1+avX3vpxZeo2adOn3r4gXvuufvuLC3LHqIoUW/iRJHy2foMdzpZ10dsT0eBup326+deX15ZZqgRUT82Pm0yNc7lRATZ6+zgBh3d6B04m3ewPixZ3eDIxF31IQRic/Xa+dVNiGP5jo5OUN11G3ULDUvEah75EUEmj7jboDQ2NaNPXBCVyBB9g/aQQNIMhTJttchNRVDSLxWhEvt7kD63eH3z1J2tcr2CbvJyIAohuPTlkaKrc9dmx2rRkDgSh/x29sMy7sXuHqkfuGKyIdDmFm4/VOxr7XXyssdUKtaSLUqlSjq6FaeENDld0MEgOf73x2qe6FDq4Js/fmYE6vb2v/nNv/3rv/yrfLGKM/3F1/6c3DY8OIxtDw6N8TY6cHRsbBhhpTpUK44JGJRhMrH1QjHyILO3ycQUOSuLpbFabuD6tWvkzNpQvWmDzNr1dLpWcGtxd8HhmVYKhY3VbYfZbm5uISoeWFNiLWievXYbfSqVBnp5gmsB9Tp//hxKQK199plnhoYGH3/yyUceeQh2OHsdDOU2aAfjENXeQdYACowxWYacXH/v2tzCwtLSyMjkwvWFOMId1HK2EeZ2u+R9iVRBFIPpnDh5h4XJbgPdRyfH2s17Fxa/y4GPXtY4LMrMzN3GNuJHyzmIr3nbn1dNpeVjRcTZGKWKrrrYmYKBupImFnPFv55rQfdqrXcgp2vvoFLuHJvsvX7+YHRibL9duXRl6U/+9EvC1sZH+6+t7AUFsoZyfXNzV09O1aFpro9bI/brkzI31jZD9IxzNq1Jaxlm9BnN5avziKspwg2GBqq7dSLRQIqcZG7IdcvdUnSoGvCP4CfSX0RtRzd/7PrZEEgPvvqVL33tL7/jcCwLcWNtef7a/B133bXR3Jy7fEX9Y6PDjjC+ePH8hz/xKakJ1taX5by9+94H+BNjLewJ+D0YGCyTaSgOrBNIlDGRdQgEkp9Ceyf7IQsuHWaNHRispi+RdhnRRqG3aS5Sg+3tVItlEncxZenukyzDeVuFKty8du3qxvLK5LFTkPRP/8N//NKXvnRiZur+e++bmpkkhFSL5CiUXmcPiv0HkICsjCbJHHbt6oLhjAxPYv+ra8vSRpF2tQgPggfEOQcMNMY4aiNEyS6egYH+YrnXX1pe34QHSvobH51y/PviwgJQoy5mzme409NmUw9ZJBIjDiEpuFuMNOYIYVQGPcJw9vYLreb2ieOjr5Shfe+Be0svn9vqL9pIXdcc/fWgty0z7MIKopWMPb3cyvLm8spSMew41EBcqV0pyrEXKFirV8jHwO+IMkGSYv4hqKGh37INdxqb9aHq4vWlkkyzg8OE+9J+LYdQi76tDDiImrkhBDOo+osiUK/3ta985c+/+g0R4vYeJOG0yB/EG7Td3C1VSg4mJrGQIUdGR7r77evzV4y+XKpRDpubmw7PNg8RhClqoa9PkAONE9xqVIKBAQFbknBzLYU5hJqGb8cM9I2NjMxdueQggZHRcQOeu3qFDjNQPb7TIZNaaO1SrgQ5ybDmCVBQrM5evuFc7vlrVPFysVKrDpy/eO3VsxdPHJ954kNP7W5tmIgnP/TR5Stn+7ubB7KvRPan9vL2/vm5BQKMxFBGtLg4P2CTF7dof0U7aZ7ojHtDQ+M7EREYVglfAVbwaxs/aFOzdqdmTpTqNUdfWqqxvAlWcT63nNCh68Xq7ZkRuFednyc26W/R0akeB7GLXyl6sKg/zpXar6yuNCulypoAtG5rtFZeatldFNhPwh8U+ths9+fL8APAyXKtDjq3PT5c2W3QSHI1hyrkuq1dZ4+3Au+R2B49jtDcjnPG+vYbW12GXJgxPjIcItZeU9Ni42ztVyndoWgvdi6Cj7wb0kNSO2Ly3nz9DBTo+edf+Ku//ttSpS49oFoZZBubhYo9lYQa9tnhkYmpGeR5eGRI/BQX8diY5O10gh1ZS1MsqLVCFzDF/VcvXpmenaKjLjWh1uap8THrc2lx3vHYkzMzUIfs4CwbxGl7Y4Pyb2wMYSsra6aB7XW3uTc/v8S8RgTmBEBlrRF8jRZLgoCB5CW5xMCrlWvFkdv2hA4Nsdb84EfPEQ5Onjmz0tydX2tvrSzcddfs9Fh5fLz08sXXFhavoS4V6zzOrxhAGxggMFOSEgyDAFZ3tVrf2HYAb69cKZNCiKytFLq6s72GOp08fWpu7sr22gqhjXyTKEoEfCXcSNaERGZgCgHIElLnLcs6iBBUg/cOpl/ZHOrr7dx758j3NrYWr8sQUlhYCxkXShYcopp33mH5nrsqr16AHwUMB+ta21j9wAP3NDfsvA69nfxUQmWT6e2AUN9/MHticHV1ExJUBiqtOJrMhFBlOmurc45O3KMsJPt0R/RRvkDoshOJnNTft0edDwt6yIpvRp93LkQvLy/+hz/78k4HoY7Tpo3AtnB7D6i+4+OTgquuXhZBPLaz23z97CuTU8empmti+V5//VVnaBtQqTyAwGu9Xh3c3thut5tWJ6uPHDwIOFC++PwPNrfXK5Y/3Syuwj7K0E9oCCETZJ0WSIjd22uSiSj29bpMK+umNBsQ3o8ljAyMrC0vi8CqMgRQy3d2mJcMfX17k3ezXi52DsJGd/XShc3167XaZGOne2Hh9f797eMzo+cuLpDgj5+YnZu7nOa7//XXX4dM9cF6SaiG9Yyl7rU5yMQ3E2hdUJ/QvXR93lkZrVZEra4sLy4vLDtizEINdtwf0r0LdcxkCHwQahKnkI3MxmOofoI3CrvxFtRs7azv7tRbA/mDnV30efF6+777dl95DSGpwLhadWe0PgZDytXsRYZK7KZqT1Fv72S9Qtrfz0UY3ABuFubPTq86WhWBPSTVWo4YaHyI08baSmNwCI61xicm2p3+0YkR6a+wrKH6cJuzDAY51jU5DIgVsfp1klCUkdKbiPSOKJCB/eVf/uXy8vLQ0IRlx72AlTKp8zRgssUyG4mE7aNYw9r1dcurXJUHeW9x4bpImsrYhO2YZKASg1U/bZlxrjR+fEYU8e5Ouz5chTCvv/oKAWhsdJzSVChyWcAf+z47BHD4CsksbouDsxI7oLtRUJcX5pqNzeGRSaMCcY2SFrcb4UKPySgWQl+jF7XpGsB14PmVS0vTM7Pj42Mkb97KUx95mNnkG3/5Vf4v5srd7cbs7DGKWLHkKB3ZEsaZXsCKz86sh1e005HAZeb46eZOK+xxhYKEZeura6iGyAzHGBrj8tJiSDRheghyxQZBwcbMdI/YQsIhN4XcEz+FMu8GdyDC06S8B89i7eT6hOBvbzJCD16+dOmue2fqA6Obm6XO7qKINkfQD58eWt7qjY0PXJ7DHFHb2CfPI7K13n3upSt3Hq/iXNUqJa4ga+PICCW3PzhBs/HCD19Ce0L+7y+0O7vMkhevbNTrA/YE4MjE1dGh8dawc+5JlqP9JTw8tnXHSghlVYKIoJFvoULvCIEM4/nnXhI2NVCXnK0LcJNTU7DTihwYBN8+CZfG8mNk9qGhUdg0ODiKrkII8ycCFEcJh2lIkWFY215njt8+c+zU7naLEck5x+RRXMaUSIsrCzuGHFQnhEGkrYVmlCvFnVZrbWkJgcKfX3j+2dZuw4qHOsBvXDCOLnLy5AlLmNfJFPJ1rK6uYD5hQE6Kuk5gSTCJJwQcSADrG2G/ic0xvYLjuq9dmxseHp+cmWTFIQiPjQ9bM0RONIP1UG/uvPs+gaV9fW1ScDoT3kbVoBkQyCZWTBZj6hyEwyAcEJmhMlCkwARQqJJ4CuRupLTdIlSFyOx1JNF6URpSBfbAn57U0gMba2sskUOjE73e2l133fHKa7Xp4xUMM18udXIDzd38iZpDF5glWygZgsbMgbyePb9UFkMbKte+EGyTvbm2Ap5SVC+vLDpU2v4QK8HBDQ4VL48OTo6N0SRKhfb45OhLZ69fvbosErxSHRkan73vwUd6+XKaOYs0Yc9Nen+T+sS/t0cgq+Qb3/zmyuq6PSt71Bemht1dIFveWL42P3/sZH+5VOZbWF5dFl5A0F9aulYfrtnbi/e3dvesZZaWsJBbZVjSwf7K4jKDiLX7/LM/bHeao0hX0brsJ/LylrHbOr0GQ4IWWkGxPKeQI61yeG9vNZn7MLrR8TEHJpfKkeorjsXpceUEhQ+5p7U7MTHFOOakC9KMrTm6Z20jbDLVmePV1TVA/E9f+/rMiZmFa1eJl3nHgA3Wjp++h1ZoTwWSwNTJzme6Nzea5Npi3wGEO33H3a0wHOBlwYPAM7I35yrYBBxGS0i4SAuUCvMA859UZeR62HTQR51C/ck3WN3G+pwlB58oImSL4AtBdeMyaiKgSoaGR1ZWV0cnRg863UvnLmKyJ0+MvvZ6i+Kh9YXrzf3Y0Fzca7Vr1XKQBp6wQmmtsb2ytlMYzaMiqEUABwPr5pqthZ0d8XF02JZsECTsmakh3dNVWfd7ueLS8nUGxbET98mmNTw6OjQ4Xh8eZyhBt0KsR83S6dKBMm++bo9A5JTXz13ATdj62kTUfO/UqVORUJt9uT5oSZknAU0MPhj/9bmra2urd+cLS4vLglRQzqCZdk8290gSAbV+s8jQXLy2cN22bvRTzxxBSlaLuJtCCd8NckLxQdgqlc21daKGfM2NzY35+csig63Oeo1tCboFs4s8J71kpy/1z127SpHGBCEAiZiZ2LyGINzR1XDkcmxBx1anW+vrbTXWOhebYxMk/X0jmLt6nU+3XKZ8HKxvrnPYIRsD1UFR8zZa0IYeePheFhcaUHiU+vK1gZr1TR4Lo8s+4hGpDumVyDI8CBk2dF97C6FXoARvFlAY0fYGc/f65MSEAYoCCmoV/C4ols+ERZHKw+OhkeGN1Q2htLu5IdyyPtC4Pr9LGsSzcMxmh4YUJlF+obBkQdm+/k5feW5tb3en6X9QEofvOZPZ6sYutWNwqHyiPqU9+L25IbaJvwZsDtY2GeyxsfGeULjmaqNHnqY6NCscxQx0w6MSgJgbFlAYziSkk4dYdHsEev31C/TkCLzt9tC3+e3t0D8ttz6oMBQhMrl93isn1rB8jk9NDQwNiKRhZpSwvdlc5wLUohe8RXi05PiM2p110E48i3o0LO6TIkU4clkW4EiLUN6UyLzsxhxcu3YttThM6WNAxXqidJjbeT8otAc64+wBgNvYbsLs1s4GGmGPsnmyATlJUcHtAtAhpPBgr9arAzZ2YZR25OCeLHvSIiAYXjf71LfdXfyrGsLf8Lj18/orL42MjNO8hoeGqPoWT7lUgNMq9Jbe2uITWJEIiVHon5gCBBt6kG+QQ0KemCgcIQIXHWYQ3oaYjOyV7N6LLsgOPk4CWlq63tytjdRHllc7+hl2+nJZk9A2wznGQPqTKlAyXGyt1c23uFe39vZWjXpvn5pWknZP4Otut8OADoCstSEYdg8s7OWVbetvbGzixMl+R5k1KCADu4wL4XWKJapiAkWGMMYRiH7rdXsEunbt+srqGoRBz7c31ihCLMkESdbetfXFD37kI2QjEmu1Vs7nBoGSLBlMNx3sEGYV4zG2UBrDobfbWN3aXkOrJqdOrPXlHGNbGxzH2kkw6D56GwbTWFXGDutKXKcb+xukE94P8mC1amppsSXASiZdldq0wAyfHxkeQ722mxvU+s5+A9tyZE6d40hCzLC+QDgOBPtpDvq7fZ0m23Tx5Ok7GNxefulFPhkLPdCor8jm1Ghs2NQcMtz+HvP3yPDI/Q8+cPnKJcaq4FyWeq4He7RLvxTshdTBGXDRjZBmgjBiYQfV2jDiLxaIQYKpyLoR0yMKaAAhqlZ3dvdQkFtRxzqBOrEsElNDGt2MTY5zM1+dXxgeGYnk4/3ErzYtQSHKoNfhmekO8t1faOV35Q/ulqp3nhmT6Hy90Xr2pXN9hYGri6KHQlmDdvCPpRH6MJyRu9DagWp/bnNrYGDpdO0kL+wWs16H37XkKI4KNTToZ5xoph1twO0M0TM0uj0CcWxhFxgGhXZzfX2ojpsN7qJp+TzCY6XSxvEwQgxqce3qFTack6fy25src1cvwAaQBM09qmWLmWuUtd/+GIAS10HZaTY3KhZV2qAJmhFjyVZEWIhOC3XoSbRDpiF/DA7a1CdHsxUfrD0CV2IZeYGQzBBywId47uIlspfFfeXSJVQGneecClrZi8TvXs+Uib5epwpBRoawmddefcXZTffcfa8CGLHVQQOqjdeISmtrVuMA7IHQK6tLarEY99u7aPhOgwVoDA6ZRSTTjCc80AJKEP5xVI51bHR80pHyieBpuheHH+Iy7EZVUTgWQLwGY7xr2J64jyrSenfvocsjVNrM0cehCF8HJ0pijwfEPQQy9Gt0uJeDGWEXbXfXd/uY6eevXb8wv3ZlaW8HzYxq6I4MEmFPnxgeh4BIL6mUmWJ8bICx/vjUmDi+0clTEvC1c3UuBOLT4PDm4MhoeaAWEZnhCYke3nrdBoG8gLAjA2zzZsyb4qWwGvSvOFCZHhuVK5lKcuaeu+wDR2EgR7VeC97SL2vpMJeMFsXUmPNOd6e/NLa/k8N977jzjrK0FXstOeC2N7csSFhmsVpGHElWeVrT/cvLpKjI3j02NsrgRCpPGzQtuGBzRqTaWBCJzIqwkdcgd7BLoFEM44O8BV7aSqTgBSkaGWmQkdLiqw0FRr723AtXr16amjpWr49amvZ89fU5cTAMB5Aj2I2jC7pdosvKMjE8b6TMatQxLEsrzFfEr8Cd0KeiO8pAodCncv3Hjp3iHFhboecH4beKjE1XCem1gbI1oDKDBtJsVnxmmKQqD90fPkdKNR0lQwhDRONSDLrXhqoBq/BVCfVkSKm2ejvt3uD5xfWXnr/eQBTxtcD8AzKM3lVKxeGB/mMTA1OTYyOjA3wcASWgmzg5MXtybHx2eHRi8oAu0Ju/+NpuN3w3IWaqIXUphvlmHLoNAlHgqDWLC4vxVi/HiL++JW2gNDk9ii5aWi1PC/5amLs8ffxYS4YKfolKlZpQwzy4xbY26Tsxy2Iz+vph2/X5eV2ohhM7R5tnczh16i5pdSRxrw5NWEtsbPR3kl19cLQ6NCoXQajiUEVy5UKFVbrKJdJz8g1T0zbcMT7iPLkaBqyvrzZT3BZmpNnIkSFLRujxJJt++4qDnRd6FfF8tdG5C5dZlarV2uyxY+JmtLufxQ0Tjal7za1cM8e4BXxb6xu0LX2gyAijSStxd3190TGYKBx6jK+0Wl05pYJ8YmPJ1Hv81J3X5+ZpaRLxBsEIkXGEEot9DA5VTUqwgzD/BDbcij3uAxHTQ40GlaKUp1iUYCUIc/B34bB8eHSNmNsQBWOcMNQmarMcrqKJ2dnGlUuqRmwiloEXjYWlVBqskuZ5nvpx0onxeix2+s3kyWMP/iYpRAh7/15zoNx47LF7D/LV3f3S8OhMocT4GemL0YVo6ZYrtXzL97fcGoxUW7hsrV6H7xnEcdyt9fWmE/lC6egsLC6JgEbMAfrC+YuIPxAvLy5cOvdqpCKRTTQWqfVk1RB6BmdmZ2heG+tbxiklShhE8iXyVGt7w9CT1imGfJ+GZz+erTC9fHFobLpaGRRYlogOXOTe17gRRQeik3t7y8urPEiBN1V7qcYjmLCX2203wl8WMe06FSu70Fc4c+quyxcvXZu7OjE5G8VgIbpiaUP8MNxSqrr0JRSIziVMW74WepKajYOgQ0jCVaXvYLsQ+cQqxrfaaGyS0sS3GzGVl0wqaoCRJkTBkIvCxoPF6HHqCWXCA1pHAk2AJ+iNK6jUzXu9TbfYdOjbMVrUxhqLLsYGNFH9GVsJwhCELggt6x/jdb5QYtIiL2sAbYwhhlBOlaHbImdhFMQUZOLrx+485wuJsEcanU5u53MtBQQCjo0O9HOJFPJU1CDqN8XpQzy5DQUyYdwL5NAtNpUQ/Vj6Yk0TDib6Z1QqpzbfUW1mWlQB2VVMp9XPeA9kHH50ZtNTrgi0YNWNIDdK+KZ8KB2KzDD6sS1dhVB7TKEvv7mxKkICjAzWEFn8YBWwBCuUFn6HRr964uRpKtja6iLc4vQIAw3aZYdK1z6KScY31EsIpAg9zIVfJYnbWF6cwmTw6r7zjlOL8+dffuU5Abc4GrSA/XW+pIRBOKYJIlGxf8IVS1pyFlhUr484KJU/BEXRIpMYj06vt9vdb3gIDkhUbJdBQIMi7FdL1eWlFXMcodCxByI4ACrITGWy3cDkIErK+iVxB/DJUNzMmfVAiBBcID0hHd7EA8oIAUt5iotVkXAzSVFqiEr8YZTFbtGiI/0OjU9MLi0tsrqpGZWCAcQvMhDIwya4COmMu1Lp729d3577Ua40lu+tVfJCcof8BIaFHh2Fyrdn/7YFEEpA6sAhAt2GAmkKTFdWZHLc0j8UZ36e443xPs84LrYHitTY9ao1JGF6emr2+LGgiEK9a5WJ6dkwB+YimtPqls5N8tudvR0dc5ItTY5dx0oeGamJZgrrM0UpAqikZm5bC4yKhYhtr3HX72xvgqFgNBBc31wjD21nzLETkEUw6J7NwEVkYJccxqGrUziRqbKXNJkFLOLesVMnVteXX3nhxZ0GX+9osURkiUiSiBwLxRhEmZXZ04dpIrgGSbdUHXrwiQ+fvu/R4Ja9HkWdHXKArW1imjAEX9GitZVlMWhWAjXHPDJsf/Sju2eOX2nt0KUjooLgBa/MLQELRNgywqwCIYJsaDmooyvrg7mJe7QKnaGXtoMkeujXMM23yA4NRfUtBERkFuEJjAt3lfvIKWzghJtefmZyphRxCn30LPY4AVwCV5GDQAXiLN9ipx1Eu8PwuNNZ+V5u+/uV7srwYEWgEi6JJEU820EHC6Wd+RYLIfobjWbXbRAINkBVZhlnE6tMwAAGwSbv6JrllRWogneIobGIURFn9J19/WzIngJirgmIuFItVcizylgZyBJqv8/Ql8sLgWBQRvlB0LQxFeIBQGH9E1IIEm7odEZudnVA6xacptGJQF9bzxE5oxAqti8SOcJDL1+54pOJClVnThRqgdONj08AP7kVGO688y6+/ZdfeGnvoO+uu+9gkAWCJCRFki8VulAvASpbEqmmWcRqScrs4Hfce0+DjU0uIKxru3Hu1bPTM9MWdEA/8O5AE14H7Xyv9fFPTgxUcx98tP74EyUcGbKAuxhdoV52BACFseAoBuLVNB0xH9lNokPZbTz0NcOwIJAiPOMUzthkl5SvhHGBmEHEEi8zyjBxYVXynaMy9rLUKwMAzkpdLXEuybhH9DJvOKuXAoQ8MA6UEf4Jnyp9B3xF9GVe1b5ei2mXldKiInRSeEFb/bcgT9RwGxamc9MzU3YBBk0sD4yMhEcLQuiI8KNiZaC13aCHz8zOoorgK9A/xMY20xnN8aAqaCZg1LULDLaTHdDPSik/PDwIMQierC0QERrRvUNoiQANRMHA4lxSS8oUgvU2c/jmBn40PjnZvd5Z29okOQEz7hCKDNNHoTAzOTkXgR/F9U1EITKkghFvuflmTL377nvXEYr5henJmfrQEBzbXt8emJZArCwAgwFaGhcmbpFMXtE6axqKYvKE4IrfKRVyjz76gb/++lfMI7xxUrw9h0QurYNpCE/Bu9DCvc98cuLJDw3OXWYCFSKHMxsOmGEZqAROGnHQodeE+z2i2TMssI7TxMRcxbzGl4QNMUeR30MTOHVop93e2MQowxXTCrghY8GhIm7MK5hikC1uDZ3uL1X327nxsYmNFep60EX704aH6oNVpziglKKgTeW+4+rau/2tZhdhEjkN2uZge2O1Ws8hW/39e+V8GTFDLpE2vUrvvoE2t6FAeg96IqQaOwTUHlc87GHhsHAxJjzC/cTkeKUsi1vB9hoazXZjByUdn54oDQ02xPGGGbqcbL95wp2vVur29mYEyO0xkBeHhydrA8MmPlKWJm9rF2uMEwUEMnempmc4D7hFE92t4lDNBmaxSUyxMoKJh89gH4LR8n23+E6cOoHtjTLgDA9ZaMePnXjqI7/S2F67fOl1Vhj0dH1tUajJytri+uby+NgYnkUyOH6ccD8jwATzIOXAP0xQf8SEcP4tLywO1mr33nefnZBGOjQ8cP7CK6Ij8XSTjTiYORz+zKnSA/eMvfzsysx04bWzzWd+tMHCFVKsGcgx30V8vBkKpL9BcWJNA7KFmrhQkJvgG0EVQnAGbVQHyXEDi3wT84lg4GVKKasuQw5yEq8GK/TpRWjLb8+IMijeoXwwPGw3S4TpOcwMJlfEhDKuSHBGzt+jP+63d5ptm4dx7gZZhXwJ33DM3f1O8GUEVB/VHHJ2tBRonV1voNLNJ2/91659wrMso7hMq9UeqImDbC8tLjDc7e1EHOr1ucsTrT3LKpJzYRsDw7n+4tryiiXYXz4gxIca2mtbVNghxHCBDvuk5W55k2bIWOG86Aoiy3fze4xMemwd4Lrc+JwGw1LyLM0zCiYVj0O6wolu4mgtgIUkg68pcDHT451AfPrMHeBdnZ0heczPXbt86SLSwgMldNCuRRDg42dVHh0lYjFpDmIKqwLWwgoY/iNTGKpZR8Dn1qVz5yrVmnhtlEDOMiXJwo4Lw0kVj1lDsojxB+2nHj8hBPeBh2e/+73VHzyzPjqEyqJhJk74X1gBzbTemu4Mb3Q+Fjb2EL6zmP7gWS6LIl0AZWjxINdn8ThKHH5buvwZqQZGeXpA2iCgREjS8XZC2bxFbokLSKGVYOj1OrTpQ7cREdgOegx0NmgzRDOui5pkIndCeb4X8R65gUKtGi46XnDIhYCi8RwEEbH+ZgS5PQKdOn3H6MjYjo2x1dxEYYIixrXmUMZaZdgEEwnQ5FKhj4dwdXV5aHQ8Ik/Wl8W1F21HBiuKefgatY6b2s8rCEbS7n2WCC8SKgm/OJE1yZAYWOQsrc5O2K8FjnB94Er9RZ44YOIVmBgd39kkO20Jf44QfS6SkEDiNaCHav2lyvraqhB6tiNSL45jXZEZZ6aPifg1eEFFtA+irS4JWqJPnbnjHkuNHBbSvxMI+npWiA05YobCbml2l1lbWJCdqdtfrY90O7aU4M9ITuGgr1MtlLdbm9V86dO/es+LL18kaX3jG6vfe+bazFTtd3/nzH/8s3NL64UKWOB8QXzwZIQtKFxMdZCfkFoMIU2858ZiRH7x7w0jhV+tOi4AciBxDfVIDMuBihWvEo+SWhe4E5xGhbEAD7Axnh8yIT2auMy5NTJEC47MnrFCu21ivCxFNCNOL8myDnqo2sHW+uYgX/VAr7W7XemHTACA6uhSh+kqoz5mJ9A1XbdnYazbg7II7DQGygV7+Sg9eA0flllhIiLSc1XiAmGBYKAbHkYUScNlXIRc09nCuTWPJYXaQZjP7dN4jdS6n5gYx2ZQOEs5pLukRRD9MUhGFDVas2DMxUmWqw8OMw6zE1p/AGp1dKEPgufM2ZAx9lvtRoed+4ApYeTYybvuuOfhO+95BHFe31i6evUCNJ2cmhibHINVLJUyox6EaT8s5DDPGuY2jyMHDvZnpmcef+JxRj/TQNg0lUIaWm1agswQpoEPhz1XkFwZiSzZMbm//8iDNvDnXn1x7lMfO/PKy+3vP7M8PFy/+67a9vryU78ya41ytRhLIpE8fEyRQYEMLaM3CWNusB7Y4KteMblBGl9d7qkmjOONbVFm2DIUKiCEMN4CUz7xlCBdwV/8r7L0EQlDSqUTM8fKtrHaHbvDibnV179XIgYh9mSglqPKW16J+Qt5JIL8ZcOgC+PgaKXKg7nClhs6Y1Cl1FCGP7cTor2HxdoZs7C4sCHIm6N7ZEJE0OLSvHV88vQZvwqEoNXy+1B9rGkGdfngRJjzpOZMU1/MU2QgkPw2HT9rddC08ffBwSE/U4xFKw+Hy+kGIRcLF8KpJVIMDoUVCjkaqo+Qk+APqoq5QGLbgznDvQP/cn2CHoPay083PDZBmjn7/A+XllfNxtSkg7dXnCuI5/KODQ5N9La3d1sb3VZLlAi7OdoDdlY83wBIiUIBoOmpycb2hgQPzmIO4hcApCGyM8Axdr39T31mev7Kyssv4T3tRx+cfvjB6p/+x2t/+mcLm8292dmBL3zuVF935+pcY8MO9mJ+t92tpjPeIQ0+jshZwUFmrAL1EiyCp9xgW0bhuvkVULoD1QHCfkRmGnlcsk7z2NXQb+iFtCEHiSbdmFn/qM4MGw5agwTsbC5Wa0gv4sqe3p6oDI6M2cfT22kFzTNAjAqDI9Tig0FtCPsinwpWOypuK4QVC+kxbEiv5qg8u25LgYJSfezjHyX6YPQDI+PaY/PQJF7GinN9/qotBOJv+IY2VhZwMTOxubk+P3dd/Jt1hlJE3AF0j15Zvqy0k1Fma9v6dpStZJSoDuDt7yPHQb6JjyiDhR50PMSg/onxifFxppdJFho7EMRyhOwIOvoUWmtckAB8J+0qPHHi2sXzly6d4yAiSuOofNijw0MYKp+o/Tps3DOz03YBEH2gHVKqcQhNAgEZ9ObKpYsvv/y8VXj58gWLnuQoVqzIim8M7X1hAq29g1dfuT4xPlYfaP3Gbxyfu7olV81vfv6+68s7BNxf/cTMb31+4swdtYnpyYsX1nYazKQ6qrdxoHPsAIj5NkyEJmizT2gCpPAmExDBHOgghyfoIgVCbAmLdjJqx24KkRFMlFicktBFJYkwQJvAy8BOHMtGL8ipqWI/QxwpQA6CwZFBq1Gg525bbeaiNjY2UMiLY2gSS7FNixKntQGIyUmeohg7US/FawN1REpAwwx30uftZSDFRJDdf9/9L7z8yoaAthbjYY1WCLPc2003KolNocC5QdCuj46yiCC5FUarsNSHPYxsS+NCwtFhAmsoDgc50emkcsuIQU94N3SRrMLYKVbFXtuuGRY0oGGtF6pGyWq1yhMz9a2t5cj7EdACekgmnCOO++svls7cIeB5iv5+8cLZTqs5OXOqGNIMf22sbHIikRlHazSu86VPgJyjMGQbjD3UMQeqDNCkhQsdw+Udgd+mIMi3yVaNtvwE1wTGzc3tX708/wf/5d333VVZWhuem9v61t/x6PU+/9mZ49N7r72yu90s//lXXhO2xROFx2I6pkFXTUNQnuiUKzQmKJR907pHnmSfboC6XqvanMMKGbhywI04AOAUWKxcbTg4vGROThWjFvTBYJU+0rBUV5DVU8QlpOnL7Zb7OSjqJDF63fbOXqWyV6+JG+MZIy0EQyfqWWlkJinXoh/BaqNXpi9qJsUFP3vjui0FiqKEjN/49c90aM/LC5YK83Bze21tc9VuBHvUUSCTTb0UhwU26K1RDQ8OITxknSx2yfoTyinWgiFVJBZgXrp0SRohEgGJ1TRHb2MjAyoUeq/lhbaMT4gwmGJ+RJHspqLZaSscAAWsLQCNfpAW+RA++Znf+N//H/7FRz7+aV4bclGuvyQTlBAcyGHRER1jjvbFmZdEcRDwdQtnRNuCPOolGSCAbqTWQrgI2NIxFnPLioFfKAlwqFyYo7kq5G7o7H/oyUnnxG03OmyLf/XX15o7e098cHZyesg2tx++tPnf/X9e3t7tpFWkv/gMV6Z6KZpBfrKJiQmLOUN7fKQvjD22MSfqo+mBWoVlIfnoNBr7XEmZIouo9mgVCIRGG5KS5RQbMBL6+YqmBX0Lg6rp7ysPiIUu2pyT323ur67Y/i8GsN9OO4tia2NnbbUZ+9BsW4ldkKiMRdPHqIWZhY0+vhr0TbxxdwsOvSMEgkP333/fE08+HhFUua5IMn5VOywdEcEMTdjRHGfTwvx1pl6GRAghBDN0grBxWNTdCruC6KzmLrHXW2srS4i13rFoxza8yP0eCxwETBTjBP1CwgYgY/2qlAf5S0iLNnswbaMO1kG2ms05yPEu02lefunl7/3wmYiUPegQgcXGC9pSM3l2bHiQm1Ofw/TQ3B2bnpk8eYYIxbgVPNIUADSNvbkN9hgEahEWPRJ/j3caodz2a0x5wJOYLq/Pzsc/MfjQQxO1yuCVufZ//PLi5nZ+YrT4xCOTF15fPXtx79vflnGB8ZBIIe5HSEkV8lHy9Bs8QtpLGpYqAShmK4w31NXEzKJHe+HNHawzmMXPcWjrAbFnenpWf0W8QSBTrUtQJFlFgv25IE3gjc0MHW4jB3gIwufDLA9W++F6uEUj5UJ+daWxvMjq02agQX4MdXVdVsgWrZ6maesfVLfitKW2RJgJq3p6y0d8i+sdsTDlTNg//YM/OOtEo5W1cmXAvhd+tVY7mMjoyAgyh4WZMHGl4suAG+gzkkh8tmoh0qB8E0U+0YYXLcggzdVqo9nkxtptbluV3kI8rHM7zAeHh+auXhaSbEMqqe7a3OWR8YnRqYmdxrqg1YGBSlAO9drHXRmYnT155fyFxauXqE28cTzw4arnzR0ZtmlkaWG+uRk2ZRdYbO8277j34e3tFsV1eqbWajaI2EbH98FmTUpBELnRDBlPgzFWm3nK1hwipsVC8eChx2r3nhkcHe7hXH/zt9fXN2w+z127tv/sC1eJFF/587m9doTlJ/0lptnrqgL/0OWt8Vwuox/BfbQSiEoZSDgafMSJ4OJiQrrXYeTfTI6Q/8fGsa0wK+42qGFRjzVKQ0mg04TJhqBugponMiemSbzDPhKOnEaQGZhFZxDCtkjkLWuZks+hYIN4ZCFeW90dnxgm9dPr6cDBeiI6QDsBPt02CHqEm8PrnVIgL/D+/P7v/z7Fh5hFy8QfsJjRsRHSLDVe8gMbCTgw8S8zNzQ0IA5RJ5gWQyfIF7CTi5cu7u40WNmLBTtU2vxG1Vq1ubUliCvZ0UIbB24rzgmSyW6S2xBv1mhYxeZYGit0LtZr+AF699zz8GOPPvnwo49XB4Z4+BcWrlvlkHjWcbiVArbCe7+1tU77lTgHvlr0RvHIEx86cer0XqMxGllB+h95/CkC9cbaapo/R1Hm7n/oMXKX+QkjGv9LMJRwO4ZZSv+oR33dp544NjJcX1/Zf/rp65cu737iI9N/8Hv3TY7Xn35645kfIM9Be7BCYSqhG5fp27FQTUaa70DlNAh0KFY4+oeQwBvPEd1KecAWTdQDSwoq0923nCYmp9ijsTMhBsHsUEzU1NZ2PdyT8G0H3dXVxAcNNCiTUHtJc7qyoDU3DnLF4Gq04EBVwnHroL1bjk7Zu7KLhflr4ol9/Q2bCHYozixiFrM8L6LsqG8hXgQzCTSCM2+gzRt3Krvt9elf/fQ//69+r9vYYHnDy5uMh8kRHSupl+NfRe5NPFgAjSgTFSLbQYIZA1tNa6ZSG8KM1leWOdvJSlcuvMZlJAKEapPWK3OF/XvlkdGIJibEsfAKAkTEbFVyMvKddz/ykU/8xlMf/8w//Wd/eObuMw//yoc//9u/Yz+oieL2Q8Amh8bXlkTyR2xXSBeEi+BOHTZcGXoZDpp27DU2eDVBQ7vjx6YlzqNwzc/Ps7wsXr8KSWZPnACpwCF0I/6EFISthU/xwx+ePH1y+s++dHlnb/Bvn77+0rnG6Tvq25tI18FvffZkId/bXLdCwy5m0CGMW+zwOnbwgAmTWBAYvCatkxAm3CAwGS8zSUBESRSUbWrD3NyNMDRbbYR4r66uoj9eD0E+GYd0TFUh6RAkkxwpt4Sp0RBlCjcAg5XF6/JzkH2ZhCx1FEoqKaZfJwTZQWBkdAUyhmCmjfX2+jrti25P1cdHdY9iEW5/V0aKIuDSdQsNeqcsLF5L16//1m83mu1/+//977XKPw1dBLkZAuehFUfeJPPyTpB27U9LymvooxQaQOUbL5XlsGnFzp5C8fxrr/GvigUxUzAMvEmxAFcq1wUDLV6f5wg7dvoOE/DZ3/zsr33+d0Kd7Cs6fMmaY0q+cPYrCwtzzz5dMcqt1WULbv7q1alhFvgDWadMO6GV4GH1o0bATPyq10hLghNIJjnJhKSiWpqfrw2P9lWK3c0gAIL0KLQS6AIZ9sVekHgB3mUp5O+7f/zznzsxN9f51/9m61//v3/ITfHBx4c/+uHZtZXm9ZWtletUZ5zrwFYY8BCgy1gVO37Cnxr8hceJqGNBQ5RYY0moQorANbhrYNgBX1uK1qBMOciH5jE6PDou9IFLDJYFP4mtQsWwoycpisgTMi/KFogY8o1qBWOIwMd2lhcWmhsrE7VglOoXC5Qw+4BR1opPK4xzUFqLATwOEUAHt7bbnGhDB2HsDRhG70OnQJKAADYB3i34845loBvoE//0/fY/+b31rcaff/WrAknVbonzDJeSJdNXvH9EurHYJKXdWHHILEuM5rc2G+NcZcPDGysskVesP0iDY1mmvE9Cbwr5yPO1tr6COX78k58WhPnQww8/+c/+sFIfsqehXi7Nz1/Ht5/53nfWNmx43xBb/fwLZ4/deXp9YZ6/s1jZffHllxFq4B0eHN1e37IuWTL1gOl8S97K1g5tDhQEbm9vbZw/95ow2RHmmvHZjZVVSGOxw9fFuTmsGF/RQYsYZHmLn/rgqY9//NS3vv0CW5QY7sZO7sydgx/6wARcmJkpvf53Wz96vsHyayyIKXLKAEEeDQNKn5w15tuEwRBYGpwUUQRJc24dmjwkHEIQdEJ2S5K1ZVev6c64JDmCd8MKlZCGQKKeIIo5aa/oG0lv10Vp1GxJy8m0NEScsJtw7fqC/DtF2yvkyAoLgGVgShA1mIEd95eLNetfByisMg6wxEOT0OQ6/Bh77XqvIiOb12BnKJMRj5JmKkR+c5ehxM9Mgbymwj/8b/4byci+8rWvhhm3UEQtTRX+Rd2gOyzMrxsbAR9QwjOZMiZvN0PzpBuwNzLyEtOAIC/9SjguRMoNzMwcO37s1CuvPv+rv/qrn/n1z1oWX/7qX8xfen3vgQcvvPQaWKwuXsPOjp2548UXXl5ZnCvVyrwcv/P7/zPhDX/51a8vLCw/8vCD9rM/v/wDLGN7fUMAX6yzDtNffwikMYeyyZRGhiqL83zPm/gMobIhbqRHSh3RT8zm+vWrZJeQepiDw3CGDFQ/+KGHPvGJ06+/dO7UHSe++bcXmpJA5nJ3n6mfOV25eHXvhz9qPP/irkRsIAsL6UVEH9NG0SPOB4XB/5JUi3iQeNJ3NM1TiOOloD8jIxO+B5mxlb0rL/0w8sNpbRN3mNOgSFxwLtgWEpaQL2qIdYgAdSn5MgOztY7IiLK4dL2xuUY5NkAxZn2lIZ6u2DeIGwsP29kL1y5if8AxFVIt/mCyKA9oNiNFeKmDIgeugJuGgyd7U3vYyi0k6OdBIJWSjr/whd8izH3963+xurICLWi25CnrlWfCAZBm2tz5Y0AwbE36l+LVlm5le0NAVSB1r/dbX/htpkSWoXvve+DixUtPfejJre3fFAsvbd5Cc/7YzESJUFSsMDJNsERPzWyvzB8/c+buBx4yIQReURl//h/+/cjwqExWYpJefvFszAUxPGYrNlOTf8mwpMtgQr0CZ93WVkOk9uTkuD2HeCvtqbG1RMqyO1aMLLJhdPzewiWSnNvFbR/7wP2/+blT519+3RR/4xvnzr66/sB9I6Srv/3GuWLp3otXd869tiENEQOpBYxlIleYF6qvD/ApTQNpTh8Es3K3JWQKWhQ4YeKtcgTSN1PIem7mYjdWfWRtdQ2s2E1UJWQEEPHwCFQMDTQskAAY+8xwGQbGSmXq2EnMiy95bWk5xXC2U1r7yJKz1WjzsQpODLghPmys/MPWT6BwoEXUEymBUBmxWeHYQRjZn0oc2rJw2gPpFxJdspbp9uH18yCQl00S/vSFL3yhPlD75je/CYds0rapJDQNfsbaEF8uHm1wKKbRSiwuXaKsLvpMPun2Ig73qac+9MUvflG+rZmZyfXNjTvzd1+8fPX48ak//qM/Eu5MX9te35w9fWKz1ZVE6OEPPLbTaH7sk58g/khEdOrOB5YXLj/97W+w90hnbncBz6Od+dqyRIggAME+HxMG9h1bVyWLGt6McNjOC8+/OH3sxPETpxavz4nkpDmyjiLmEBeRouyg8Sae1KL/SNErL1999IHN0aHan36JuWD17juGP/qxWcTl61/tfPnPL9eqtsqNwhUwIc8hBlDWbOhHEpGJK9hYWASkWORuift0BXELN7eDModpbe1dtlM4BOciw9XamlC47eR4CnGH6VWNJB6syppMiySse+afobA2WDt9xxl607W5KzRKkiUbKK9GsMwwtUfGKnbMbqlXH4gYLjhMiebag5Gwb2iQdc2GOxH1ZEaMShokKpjIrU453BtcPNAomopjGYztluvnRKAMh9jcfu0zv0Zj/bu/+dvl1SUh5BNDQ5raXg2LlokJAInP6knVw7zStFNYekp8qrm7aUcEC+mXvvzVT37qk+g37X9t7Yrd4N7aa249+73niaO45IfOfOwDT37s0qvnmhvrtWr/sy+8cv3a/GOP3vftb3z7Rz982pyvLa9bswwkopUSB4jBmTsfESEoKtxOb0JsbOsJRzo5Qz5KWE3JDe06wqyJLs5v9w7FBN7zIFpoMckgxmi7u7v0b//tii0CV681B4frH/vk6a21LWnhTp2avnhlhZkgFq9cd6Ehs0PaKHNjpQasQ7eENIEEvpp4DEjtShCe3BAfzWK4xKPFsDXzdMkvwB8fAnO6QDgMSXGlbiIG6bfsU0zciVN3sC4vXbq43bDNnTUfoQlKE1YhXK+LFkoLKeeveEoetT5e98GBUMBV54PSasWmHc+FsfERlFhLeJxFFYuv1XZqBxNjsLCEtCo9vH4eBNJvVyLO9l+WP/mpTwEHcY53gou70cCktvnFolAK2QwSK0i+n6g0OjiMfBwHDXEzsnR++2++xdiqo0zPYxNT9PWN9aWIWEXISKq53qULFx966AOvvfzS6vbm57/wub/9+n+68+GHZCD67d//3fMXz3ExSqQHmBgTSqsSieYQQTpOtB67qaFvRGUElY7NdaWRsYlQ8RYWTp46w0PEPO05os1VRJi1ZXSvExlnYb6HseLhRa5vo9HdaDSxgOZO50/+3Yuf/OTpZ19YvHR5S/Ax202EBhRlmQ2shcQUShNAGwIWKxp5Y/RSS9AK/pSIrUm9ixkRjkJXZ0ENeiVUgwWe1EzNJMYRPBA2w4nSUXEsi+QTQ7oCR7UiQmXq2Cmxchuri2zmqESUdCWfuUrhNASyI8qxGvuFGuENdASXStktFjn2KQQyY22R4xF67A22IgE58qUGGznSxoSwb3f3S36+gTtvYNDPg0BWRYaABuBG8x9n2K+PfOc737Zn48rVSzAoQB8rT4Ew54vRIeZ/9JO/cfzUyXPnz52/cPH1y1c2F+dQ+gvnX1dDRNpEECCQF1jrjB/JsqrEbsjVMj83t7Y+N3/xnuMj5fbm2tCZu86+dmG30Ra5AmTkAasFltD8gNsFgXRStSE9pN6m+8hku7i4gAYwrq0Jk+WrrFa2Nrb7Dmw65rfK78mSy4kdW89j0tDzvXbCRTNiHXi/193dq/ynv7pu4ru5qh3xFrefrFccJBZoiBlh/coua0B/PHGjV1ade5iku+oNJSh1Tw3YA+6yRdjfJ4Nj9ayRkCHbyBeAVGGgaGATsCFpAlXpWxML1y5vba7h2yggehOUJ/73CTIQQ0xNxL91+isLTc6/9snxsizS4NbfwVtZWEK3Jy66MWoGzHptrz5UV4lBoZ+6DntCJsIPb8y8Qdy4fjZD4s23dCxqipEkech8P/rYI5/93OceefTRe++9T6ovEXghDcLjfMSU6OBjTz5x30MPcXJ3mm3nO0AT+Ue2Gs1wAFkjvKAly6XlBJ9jJ0/dfe/9jMpsv6ynQim+8Lu/Ywf6l/7sz5pJEv5X/+r/9qX/+MekFBA1bydOntIXMKaABsdI1DGUiwLoaxouwKSAEnOYwBoEg1a8Fdkhln2KUxMf1ie3EBtvR+7pGuFAJcTkQMbQVqJO4XGJjNELWCaKwuiRKD9BC5+0Ci2YAoY9nM8EZy/6KXRtWBkkhucuJA+/wj+qa5rsACQoVsqOh2ragWU7H/SBUWGCScNRIjBUbgfEzaSGhVMWLxUMSTvRYLsM95nKKNtwxdxozG2IMyrf6+V39nqFSq3bK7KI8e9MDVXkYY9mmFCphczYB1wFsVNWYJ3hIaDR24gUNVVhEAqKmrQTnbn1+pkpkO6liqISbURvkXso0O3NHp/9UP4pWweZLxZkCrp0WZa7XKdbHxu968HHBZU2t1vOjLRDg44agaGFPoVDoj7YHxyqCEjRWWylPja1cPUqD7bM6Qjav/l//j9O3ntHiwu6ubGwujkwRuPbOnPn3VJyPTo8+vS3vwUCx46fQqV4C2KUKUpGr9AglphYiOnKuo01cHewrHKr8hmMjIxNT88wGQoCYXdI2nvybge/97+cYhWWT4NGt4w3JjTmO4wrtvHLvwE7EhEKThA/RnZizmCxw4oF0uBH6CtNMLpEtrCqE95HjGx0MsDIjhrWHUs8Ccs0eYB1qTGqiWb9aIajV1ksHnUdNUXX4BakJjHohv/IPKYkkCjMzmGapfAKnNzdkaaic/z46dP3P7x57fnZQaHrIg7EuopIFAPck9CaJZfxXohDhwVDHaHCd0jfFl8AVgPp0pmE9AHWGxiQIHz7j+z9qDgxLy8Aq3scEmzdY68aPnfu3I+e/dEGP7v9xiuLM2futj0Pt/YiV6DPC+fPMyiXq2Jkxf0HwjOvGbI5EJVgE2NmPQrwF8rQs79SkIoCsCRQAR7QBVae+8GRISsoIlQVjU4ZmM9YMKaXVU3HAhMC16GDqUg/63zUo+EiY3dO1Ligrz0lLTdjCQ8xesJvwJwjWYf9PcblL/BDPRa6Kc3HuWCIGQJDmRiSby+lhFbGAJGyjE64h3+OXU3hFtQZtoww31nQka5flzibY671HttN1acavBj9TlfUGYHJgX8GZ/MyRQ/9RPOwVI9v/JJkK/3PBHatWC0Ilu4hUDtCmvYOPv/5z5256w7eMwYLpKuzPbd29YVuT6ZKjifZgyXiQLtFJ4tunxoen6rUhouVITHMBSEhHPdVkS2ZPziB9Z1746P3Ny/3hmQobjIwBWATRwcAK+nuu+/h0/jRs8+VB+rTp+5EEq2lmHgH+VUHeBXGp6aFIAOsebF1MBiFRFXetOlEwjIpJmUQToTacrUKpkYmpx48/cPv/m16BmbYM8d9b3eTQTIiqvyX+qCLOiLMyh6acIImmSNWYxKGgjwkNIrp4nj3fW112Y4AVAEXorXiSAnVAjoxzeE9iIg5YSfmWBJ+MbuGEzMXY6ccxfSgD5QmHIECFV0huaR3EcPkqRLtFENTGzjZ12FaV1ZUqH3/Bb5a6gmEgAxOQZgC2TPUCMBnt+6U0nTP8iO6pF9iwKpO3Y6gsHDU94eUDg/0UE849kk7m+vbp08dP3nSXtWBolw5nG4j/Z3YYtAbHJkOHWJ/d2hoKt9r5A422b09R51yA4yJJjei77PNqWyAqWs3Pt705dYf3nKvZ67soZskUkUvPfEV1nsG1hDCYEyeDJiPPfbE3/zNt7iHZGneErYxNKh0XztsuLb2Be3s7k1NT8+1Ip2KXGqZvUQlI1PTYIgT2Wh24cIF0BfZIqID3aDWUYE1ihbFoCK2KxGGwIio3k9GqyosVdxnopWZLdh8Y3DR3ex/Jc0g6tW0B15e/0qdOo+eJjoak+pSDwV7Zmaan3V9fcXuRkTHBMHL9GuwLTOkqjA1CdrTMakJtqWRH3HjCo6gryHpR/8S5jlbniYfFZD/ktBCyo7OB4TjI1amAcVnQqt4HhewI9LyMG0zHKcC8VYqqJz/wCa1EriJiHKfwiEZWGFs9d57Jz7y0Y8UK4MDtSHdpKOIfukr1iojJw5sTR+cQXkE1u031waq09G5Urln55NMI4V6qTpcCHUsuGTqyRsf7wiBDCC7YhA3sQcO+QqHLCxXWvpBkDg1IYHteBIcMTDwzNmx6q1rV66G1EdyTPoIDajTqToGRZyrKFigSZNiI1ULy8B60RiHcJlObUSOjrVVHF1DMMsoREJBr0uXLuqDRj3XE/OKfuuUoQIHrgPQ5lWLCEMA2A8prAKLiU5Ht8kZoS2yUTEcCLFViefm3o+gz3pE7Z+amg5kcCob9CTKkmfT5kAjdak2gJFYD8naGFMNgibsaxdGEc4uLyYYxibobN2piVuQFcNzL9/A7IQrOqk2H9HzNDR3qokagppixMH31ZlK+TQE5aPD3kxjor6wIwQtRJOA5hOf+AzhL9dXZmXHrtKmjv6GYJUcwZmNpSyarMtvb8dG3RZo6SLhn6O37JAY5ZMJXkgo0M83X+8IgbJX0jgDgXQdUNyAXZoCMI3dER6JXCGzNrsyNm9cmbsq3Id0AnmnxyJPmygfPnACAcDhU97a6q3u5Bvck6o0/qwJ8yEhLkSVLSEUNIocYFk13S43swAogVl8W86bMssJhCE8uaFDxfyG6zslhY0VGV8DzaPutHo4HUNvimd+cwPcJCIMSIpWR7FwyJt18GWElLhXUDTbrmJ2yGvUXIhn8nZAU5ZWeBSMueRUMcteTYmDRXymDBCB/ZDdvEc8l+aiH9aGdnXGDPENehSoEN3g5YQe0dPoXOKS3g0/hccAbWud5hRCmwJdgh5kEp6eqD4wJ9PcdSQWFfHM8Uj9u1t2O7EROPdx2MlhvJZFUcUIVKDImO1m3Mb64LxyTL8mtIbCSVmVBIEM6FTzQMVweDCCeysxCv3LkOIdeOMD8OlKsA5u5UYFLr2MiJvw7ZmAfLe1ttm8TOuQKu57339VAL5wOKbFoVowUlsgLE3USMIR++HZN8XdsZ7AHjURYz3JwK9mDQJbSDAgl1YezqhdPsV/9M/++fr88v/4J/89x6zxuMA3sMSkGhbJOZEQENa9bNI8zyqMQFWwT5cXVZiWtfmLGYUJgoy3m5uWB0MoiVLIkOgOMbuicZAWyGIpWq+We8xlkAL1oYkSoiWNJpLSZxwtER7TEigekDPG7MaL2vIJbm4S6fEZcmKcNRCUKBA9+4xRBbBDhM54pec3f/IczoZGlOhC4Fmak8Ajshoaz1KP4LJj3nHP3XVnYkjWY3tqocaAaOICdjTJ2NqLSAXzRakMy8DQWmA0ZNAHGJhqKNrJOh8dunn9DBRIFbqe2gsziXsY7tJdq0M6w/bmRfkn9vc2Lly1v3GPMzpSJoR7kCsTOpgtDKZHqDt5+rRc4yvOmltfdSxLYihhNDISNjTVGp4Fpp/kDTawDJ7RemfvR89895UfPh+GMYTY9EXz0TErA/jwE30z+BsI5IsrQMwGQx7rMxMugDAQ5I2xOoTSJFyH1t5v95JFEtxHhqDYaTcwWiRci50QTtrcLhbq+bL6ebvUobFon63XNEN5odVpW33s34YfOqZpkDcuPSMg6nPWZb01TFAMqSiIlBr03GKIDkZtgUaqTN0NzIAomgrsT4NNpZSI39OThIkmmiGKXC+ngsVpIHyUkxNTn/y1X6Mxcp5oLiFNiHpuyBvSX5Z77OlBGrC7NJuhReLmiUTdYOhG60q9edNH1tE3Pbr1S4AnoV6AO7GtAErMCEZANwzxE5KCQXvjQqk2lh+Ysl3+r7/xt9cWV/UsjF8l+Rl1t209JAFF9bx0rX3Z7ew8kgZ1w6mp6zaPIkhpZYZAE0ovpIwuAzSiu5N6AY4hrkJMAzd+vxu2T7hgRj1Vu+fgmJEICyqtUQeLxVuGoPI0lDCUpUlCP5gBOuZMPSYp0TLtqJPhuCjZGS8Wb5k9iXOXL/FSOfxAvik5IQNQiVpkdcZispxit1PYjRLrSpxGzrx07De7AP5DoNWB2J8aokrA0ltRVfqSgVdnbtQcWBMQDu6WrkRwPIzLg6ggSsNTte7nZVAZHQsIdLEFC/dgZmLqc1/44vjUrE29nisNg8K+sy9jpPh5BCn8PB6YTbqiXyftFbbzNTYXBIR9ZtQoxKl0eRitpuunUaDDXupKBiOvZP32BKarJSDV66EhhcrkQXnIml6SP2xlzfZk64dfbGgkRQu1ReRsLS8voUlplwybaSwfklN10Ol/nZGRaYLpbqthGFaU7qWKASmovTEYseaC1mGX/bEszJOdo1knE3kPDDBAP2FdSJneKsxN64kaXGowW1Eg8REFlEQUtaA7WUMmDKDSSOFxh5tpeGhcepHdRuvUHfflcuc21lcgKMeFhR7E1wvhdoh2gUknwr2ahKuwSqdVB0rClLkmEimK38QIxOyYzqA6ghFRsRu9ShUGAqVJCgiDVLoPiEWLoY5llDT6rDZPQW90eIy5ebfFEtiQtIVSMjE5/Ylf+/X+iui5bdWCUsAwNgPFjsHofyI8eh6pmUNfyU2OjgKUjolK0AoihBR5YoABwcT3o4fvHIHUHg0k75KuetOlici4Gx7mWE/BeAos5bYjty+ev8wELk4yIj7izBjneYXV33ZmkBUqxAJmvzATSqYI2GzDHt0bn9iQhDoWZZCBUEIjngb04mJ1hX9cWO6npmYSQMmAtvlJOh6ghHagkwYe3YtKEBZWTbgRm35k1o1AHyVNGsiiZ6pKD4gvhnC4mrMFB9CxVCImbl+aUVv4BNOQcnr33PvQubMvba6vrB5cFwImRyekSeoe0VM4UShxwTgIqwfEv5gnF4QhzEZSgJhsJ1abkAjeJfUznuu2BMapt7EiFUkDDAIZYAeNoC+hsqT7WFHkEsyOLTQ6GTnHhlKQxgHBAC7Sx2nuhH0uSNu3JeOzdKwKQ/auXumSRqGB6eATDHKeqIuYKliFUobi5hWrJC0/g/JVW66A703s0bGfSIGy0lpyEzBINxkRy36KUQVfCVE3JsPiM+DOwfLSmgjoWCd9/U5RNZuwTru6DoEMTCpaW5xWlp11OQe8RoJTJClJisFYigle6EQ0CmpqMAzHFZpHspHxk8d53ZEfaS6hWLY29IGcA/7ZolSrDgkWUEM7fOEx6mzsPpXxmfoPjp4HX3aZWEQruxciUu2XXXRwMB/nK8Ixmz6kOLjzrvsXrl9bXpxjZB907PvYeCYraEgrUFk6WPujkR94rFHdUzGDQjQXKyJ1hiEvqCz/BXYW1hpwiCFA1UCNAILL60EjE/Ahk0pIlX7NUigxVQAmnw+wtfa2yFh4kcH1+uKgPQwqgmgkZhgaidxUXk/mzUNssKeKAEpY4zu2f9pANSR0H3CoOyYp/GBJlM5wwHM3euUTiFIHfyoCZSV8ehPqJHAH0ri05HlWi4G5BxkypR3y4O4HEmcwW5HyFd1wF4avMF5ZaLFX7YAL034yQcrywmxtiPPiMLI9kmISJF19BqxYqpnhdT3hroQf1Hvx1hLH8htv0UP14WYxvTLH8TqCi5vVahEnpW3gSDwiNB2FxXJITQAjjSDIkJ4nfErDgUOx+DyRMMK/vkLf2dlZqRHlXUDJbKMamZjVwMLiHCUAYbFfRLWGLDpWr0hpBCl7IBPBSGiRlm+qPyYA8DWa1p485WHSoWZlarjeGL0VBePs8bVgQr8Lyg6ustArzXbQXx8ZdPxVZJkKWif3jV2aEdjKOAWbnWQoIXNfnl20a+fnpEDeWj08yWESM9gITtKMG1b/gcGaQA5PDAH2o0BudRJLTWHHxICYa/D36Yr+pc80nJ+AQAr5OSvhfTcad2P1ezm7z8rYN6XXMXXhcuvn+qJpU8iXFpdsz3De2/Ezd4xMjMr7GGYK6NfrIh4RtxWqFt5XGY086EOrqws87VolMUMdY8iGQbbTnDblbwB2nBp/SCSH+Nwh36T17ZdQ4s222OpY+iSL4AuxpzH6CbVDu4mzUrmiHKVhIwyAEbN0PhUwp0YJK4JmAFbQjEhPyREZOEqjnJ6ZWV9edarq5OwxUndlYOjUmXvm56+urS50WptwwFQiK94whUGMkxAXazYSHYM+J6dn7sPjG+QEPUFvEpQJaegOrNKobbgGYxcUjFUNBbYy4OwRGQ7reEGkhWLOwL0iTZnEwrteFOckoEC3tWbRGVgxtmjGaocqUjEwHoYU7pAyKWxiEQVBUjhCWNPlEThz7UnelXqEOtJbTYi9YuGySTXHStO6Kyvv5m1YmKKpTBRyozqvRWMJE43cjcYsbg8VjQLWS2T8O5BnEwf1GKqh8Gur16/Pzx0XunfsGHamNjuYfBLSdtjsRKUgxqk50gxvmHxwMC1yMUSi4BgZXPen0d2mBIwjjF1AB0V0wEwgUsX+8C1EwbCeQXHCEJ0p0vpxLaAmJnt7qyEzYIiNpTjAhZ/BOXBkIWd7kbOzwabPaDGzOxpdNJGGeQg1/Gpzdbm5uT44PGZi2LSiF0Fud8IZmQ4WpTCZoJACST1kc9ircyTXZOiJXgbticsK0UT0PGi8uewTU4XLODUPqY5QCiOkaMd+/LjhzjTy3chnusOcEXJm/0GcWhTeT1TqDck6ZMjY02jPsjD6xvrCnAokCxUXDR/VBfUYdUnHkMNkRQ0lrkmnd+7XahFJZ4o9h5H6YPXhtpAhuw6hoQBwvQ0CxYASiinxlvu0NKMu4PVjIJP/Yw8U90WJa31pcVHblgO0QADJA7K30NLPnT3LxGl3Lhs5D7fcCRLS6BgURX6RG5o+DT25sX3TsrGjT2x3MQG+UFREWnGQWT1+1mwCK1v9fuGAbdowJbERlM5AhxLTccwoOBp6yBr29CQ8i+hg4BAUYGaSGhITmWwwaZEFucpWixb2OTdILLap+83iN0cG7vRPJ/1I9R6nl9tNbA5SoHdEW0CQvKMIpdmJRQsbI6gr/gsRGLoDmqGBuyHomw/A9IDK7NwrK35ta00XgD1E+0QjrTDgYc/cWl2iqqXVy5Q2WKyzRbENxxLDBEFJE9mUqVMxk0M121xbzncbZKXdpiR7FW9ah+JoD+zacWg8P+PuLgMKtIBAgIYI8RMYhz3UJAoLW13E2ehLIigZSihvFO7fBoGy4elK1huF3JiTtFxitWnYq4QvD01QhG3G0ScFu5DlncG9Q0gJaw3fS012QQhOqCTqrJw9q/IQ/UQFRKhBEI9oJrAldO8EamtRPDXhIJLkW7vax6mpLgKH5IeRyY4DP2xIgUyQWGCUM03lj4slW+oLT5x1bo7S6PRPfkmKGKSKXKr6o3dxulksEn/Q0Wi8lIhBFEc4bOE0LKKIahHaXJyJtrWpfj2Znhl0YMNee9cABiqD9mHZNXnt8gVNMFIEOU5jAmADQ64TPDOgmoKQudSTJkMj4SawYETiiwUQDuPtYEJhYNSuvkU8bJIaI92A/tjtRDPQYa+ZZuzKQNQeuBkzFQhLEtrv2u9sMQz0letTp+71295uo/8gEv5Jxz7lYIoTd5oIssTgsOxseF9sY7IIw4dzcEBEFB9s/RMYwlrKspbq10R2aTG7eRsEiglNlxLRs9BuArsNG2eBPXDFQ19hBhzScI0DtdBvXRqtoriY59YARbM40Js+IUBRvJ/Mz7vbm2uLi4ubNxyKBSyXIJxatN6CpIOp0Wbtgj5KD1IZ+mZNx65qUmIA8cZFCBb1EZacUIzRM7+KeYQJgROIfxq8JVMkSegVHLbygq+YTmJLyAHeTXMWc4J44D7xSKZYnlSt+6J1wrhR+0phsURSWrYZyLy+6ixOhyNFeCvsVa1uOLDXrHjilag9XX4yNOTBA7fQ11pihY6jVQGuVBVTHtDmzrO1iMSXIrsQ/nJkOySiBeEPCh3aVpAxHfOpWq2kFrLvgUwoqNFsb+1EWmJkvz5Cf3GctjxMab3Emh+bnBAtEHG0EpLGuVhRp0sPLQYmOTfmF1NToUuj2ZV99flWBPJyVi4b9uE7JkMvNWns8EIt7v3qobk0GSxRkYMtmeBoIogQhhqpwzdzVy450Hk0th8UxbRPD45MBDLtbpoDhIeSiz9FEgMbc5J6StGgFQAL7NXntBYDTEZCWjD37EsWOtTVBxewmnA3aQEGUsTmUGdWR3CoCDEhSiY34gxjFIGoIB71Bz8x3vgwz+TckGjgVdphHks/2a+l++GSHjRkuIKlEjPHxurKrKwurm6sBNUMj2+oP8i+kKAAqzUWdmC3AfRoIU1zfE+XhuiJiBErjtzhCbaEyBQVniLculS5vC1mfG+xxczratJzremijCXJuMiZE96SeBLLAD2DQL6RwyLGLnReFrLYb4FN9JMJgt7ty5iDkw3AJydkONF7U26JjjD+WTUxK4RWH3npsVFx9DG/FiHJMkOJ2yDQzQHGsN0HsNPlPrvBWf0U8bkJLio1MZ74BN8Ynn2osUdLgjQMKDw4slhI/kLQg+NsQMHw8hEnUKrYMiGCHvKINqTFhAMyJKCI0sGeSLhZo9GLrDMQKJhaSglAsw3akPopwhRi4CkJfhGiH1JBbMn0XuB6iEJJug2bcyhtschiCG7CwRTSgynGsWSihqMHiJCztJhDIgYvOJqG8C/+eblwt7ebjpCDtU6ND3dN6IlxCjOLKbQGcfMMezICoQfZpQE3N1ZmdMx1kDZ/oQiQgztMb4SMN1mFHBWlHrHQupeGr9vRQ4iXAA9f3ASvNhzQC8hbAdI7BEYZJALMpBnuLTINsznLMjOdIz5V09iRE2WbaVcuBu+3sbv27mBtx0o0xqrU4kwBAAdY1mHyGsE/cPCZATzrvc+3UiA/m67DnwOqadgxtSFHxKQqE4sroBa00DitlbSmKUjwHcswaIHaYb+TlbXbL5o4z3fH0lPCBJNROPphIoNBhciE9kBN06OkhQhL/J46og4THKKunnS74ocGwAVM9dOlV/qgnWx4ZE+dgRCeQ+P4JZa+MCPtBxJkKwLgsRi/WWFS/2IUovzDGCssplANMagQ+lrUlcIpJM7KaFivG4QBMFn/tCk8Hx5rAmDBCay57TRoo5kNQzocsEq2TV3V7WwCfCI/1IjET0M8SPJ17IDcWFuStdrOTIKHngXuBPxBimBntcDKm16xGFnMRkyI8SBBMVSqE9nFbnwKVOnhhx/98Ec+PDk5xaJsOOfPn8eF4c0QY7RN4MG1w/EuYk5L2CMIDcSxthZ4ngKhdqvCFc3cvA7v3bjeikAeJShn/U5FEh1KkxUfFpAhubInvioPuHiOKQx0EOBPp2VviFmXxoj0jUyincrSLGKHPGoEUch6QSGiKv9znarJ0rGaAN0Ks1hJlAEizflNb6LcDUwKQuhJ4LVHCdc04DJgiJA2MNgxrtpwdCiZpi0m373WWS6VpEPqNdML0u1hmGpY5IiodpHvd2RggkG6F3teTU5EmAQvMGFZx1WlsSCEKYoj2FKB6GCvTDa32RozMECLoHrChNctudCZQ1UM8QhiWSzYX6SCbItrq0GWkNJAJOGHUXO5Bih8TQRYhe4tKAJRjJkBPTUYpDlOpCBX9R54+OEPf+wjk+MTBE1Iaq6tLDNimlw7WwL0bPuiZnIlFUVBsRMkPI6gW00blPHGYDWWrgzgOnHr9QYCZTiRTZVPhXxmN940Q+7Vkz3JqkgTEFzWryxgPAxKahJckJkhp2FurKMZdqdaN6gxrytKhBDKqQjUVK2QdoPeBsakTsIYyhSGmKELcSt7Hl+1on7NacCn8p741A1fo7upzx4iT1is545Vps5GtyPhX/wQ3CwhU7JRh+kMZpAri+VgVWLX/YwNQSywZqbTIgTNxmX6eLS0o7ca89CdzviEBCFpwjBHyrdayytLoiFChkgxZ6kS6idhIoiaLBTq1A2Yj6d5HUtx7ixveFCmmLnEmv0QkIl/EoFJaJuBPn3GcorR6UeqKFe69/4HPvbxT6Ax2DJBYmd7p1Fu6JgyWjxx/DhFzwIOcwDhUmScRCWRTWuYnVrWr+Cge7uG4FI+NR0fAAg4RpE1fnjj6xsI5IsfZCsCG6Q4gK2D6fLcyG99LSusXs341EXNUXVDvIkBhWpDv0Iw5VRRSxhjYrs2qSgajSmTRCS212GrIBgTYykzM7r3UEISF+hZ0FaeVnQ+4/Oea44Lx/rzMEiSxGJQJGGY1qOBZDeHVSKnMlFAp0IdCyzLRKWQReIL5A6dPw4ApO0FS0OLQgANs7teAhuSTkoP6KRO6IBBJNrgmeZCeWTU0A8sIAAQLN6W1si5bDL0xyusdkahTqxEux66YnQ92f7l6VrB0YImozAZdsaIwsyQZJtYGfFC1jDrEZZvhfQVJFyTGG5kZJhB8erlhTN3nXn4kYfBkgi0vbHJTwRZ9Ygw51URGpVyYJJ83rYu2nTHLBDyXoRS+QAJ+FRV3oigu5LR5s3Z99wVQLjlegOBogq/gZ8piS3lcRl5Vos3veWJT7W7TI+fFNCSF8P1KJd1JAcBx3jd4jB5si0hznx5iCpCpnG0mJplAbjFbbRJ6aURWGUB8VjQQbwT1+KAi0lllzmQbDn1W6PZcsc3zRRGF3PuLuGmIjoTfYidVo6Cgt+6ZEF7nnhiDCqGxvYR6yyJ6spoKKR5EyOjW5hYAi0Qf2MOsGRXjApbCT4LGJ5DbkQr5Ada4V7LYR8sYt6yjmEsK7c0KXDIxAGCSzUgqZrDmRCKub68iJKolx0sqgw3js0V0WQMDZUN/2hAPphJJFqs3PeBR/jZT0/NfugTn5REM1CuSx63TXKFvUq63Djx9dhU72CiudVw0JFRcNnrsCH7XOkdSHdmqWrQPMJpxXUrlpvDC9Nca84XhMdn1lsvuqJbt1xvIFAAFY/ZYwDECzP/aPbsBiP0RV3e9QlvfNV2dhHdVa0ZX7WgN/v7Y/y6uuYhRcZERdwhtk/mTVho1zYNjF6MMmUmXatTYWgRqlZC1iBd4fwDx1C5s25rSPfUaeCQAdroTNjfshlNSK8Fy0YPVegz9VaNoaQAJcHBPKGeGTjUnVTJ2CuoDYKQt4AuEC7wMjBSJTcKu0v98JNqs65mMBGyqKuC6JW0AGBh3kkI0Lu3L/M61Ix+Jiip300sza7ghRU8i8wIydAeaYmUC1tXyZbLfH1o1L7HuatXbAs0j3CVafiL/+iffPhXP83KVpPvrUbojXxCGw6ECBsk4a3joHTOL45IhAVlKu4EP8pQQfdN3/T0NEam2x4GVbrBW0MY0IoC2XjdZJwr67bPbApu/byBQF5wqZTsiTbE8o8dODTrjsMfVZShlP4ZfPCfMDuw8YEASSFIEQBZ6OiFeYUK62tbwGXjv6Kb60vcp1oP6Ue5oFshEzEC8zF7VYfS8zg0HidzH8QC6GOGYjAJOWLisjGYE+TW5MT6DIOK2fJbFEgcJHw3gVuBhUGuNGim4130WroCgnEakZ+imcQyYnoCYwJ1VBhYG5gZXPLG3r+AXjzzJBELaylwU6v+0XPiFObA3CXLFkE/XJpYgFmNRgOhNUHDCQQWtbizMz4+9Ru//U9ee+V1J3BOzpz8yCc+feHcuf/0F38mDQz7Novxox/40Od++x/PTs8+99yzz//gaWduTh2b7ezufeDJD1YizkFCsaC+xsaJhHI5kGrsnhGVW9yObdppNJzpwahrjIAju3QxV0IXjQpapGCYFSN1SmkMM0k5iSGE1QPIvZVhjxugyy6Vv+W6gUB+Nq9+EyIbJcICaLtnnO8T39KVsAQsQgTRXjaf5g3d5xdVitFWo1zmvPE8qTSXxtY6jXTEsXnyjjs5cHVdkhc5CrNVrFE3CQLwxT4kghTR2NKPzug39E04FPPKuZR1w2cqIIlnQdxrYHr8bDoxksACK9IMeycGcpN+xJNAFNDGIE1nDCp1wIqMFk1vKoz4JZRIv3rLTxmS6IlXguRkxDCNIdZrCG+mkioqkeEOWdSrzpaFIl6xIhLRCbLkdVMV9NY5xv39j3/wI5OT04994AliBxzjXb/7vvue+thH1lZWZFr62pe+8vDDj505fQYGPOywuycfP/vq2eGxkVi1FgFzSbgECIjddXvjY9PIUIwWPU92DVEK9sOyymfMgf81cXwJCEPc0TEyGfzAs2SRNiAXsutJ9DldAKLk4ZVV/uOfb7AwRWGG911qzLAncDypGBYrAJlRc+Xsr7SeY5qJPtAF0F1szzxEzP8suMAstXentba+uLgmMKc+Wh8aHJ+Z0XfbvvhXOWtCeg00jP+T69OPmgt7TKJsoeVaLfqDjGToEDiQZs5csLWHTZzgGgsskMKdhWkgBh+hjVZeutSA0WXzrinPE4MLrM3wJp5kJdGShFsaiZZI3BArjI5hz9OfDMpIvVf9ysGrbwRjNyrQPauHxqNghGJCl+AdaCVRIwJR5M8gKd5//8P3PvDgHQ88VClV7XYNS8H+wRpvZ7E6Pjk+Mz2l1T/859N7O9vwwXBiR2x7lw1eMlXHZ4sTAi7TodcJDjFrGtIBzCiNrs+h8PuVAdHmEChBDBEE54hLVGGQa6GMUuFHOEwgine96EqFY9nceiXYvP3HGwiUvZmVcm9qdYrxy5MAXzDmQCArTPMgx6ogfMoBgsZg6Sshumu3uWl5Kev8HrHFzhi1zMPz2XLYzwLb1IBNqc54Gh3J9QZ3mvgXd10wNewoo6JBkNJmDPo01DWMFCuTxNskCwWesNNEcom8rKswCgh0FhD8lMnv3sp4lr6ZVka/wJ4AYAhK0Dx5PW+AKIZswNihAnFkhy+hmnmYllJAVkJgtDmaTvke8WgKL70JfNgeS5UBLOWBhx62x+oH3/8eKIUUrOd9gsLqe83GbruJzo0OTc1MH7//oQc/+OEPi8bA6QbrdZ2HgmnunNi3bQYrI2MMZJGrdPZY4HeZfa83XK3eefcd0VUHWIumgnF2QXmfeqVbaeKhdbJS+bcY62nAeV+0kHhJmmycPI3SsgzHRCyqsErEmohaUyUZRA6/Zjc+f8p1A4FUrSKVKpqhc3wiO4FAnFD0vjB3y9ynGPSPZPvCKAUAgGsl/LcQ/KFHP1DsL/31f/qrjVaDhao+xGnVa8k6LMSsLeBwT4oBRN65x3FWZuQEtaucwKHNoCLWsjmTEzKmOSYaEWFHEdBkSq342MZgUmKsTnpzJIvEFEQKQhAmFrXED9oKq1vUkExr8TRWld/8EPVGSZgBjrFwA62S/mZNeEtP0PEMjug54xaiBp1EkjgUMngHrqq2wDjMqHv//Q/8ysc/deruB374zHcfevhRcsnFS9dlD6YOXXr1hdlTd9TGJ88+98Nqa9Mq+uI//qf3PPyA5LJScJWksoL6gegGblNUXLZOnzgxg/2tr29mI4pf9/epb7xZpBb9zTJohZjj3OvtxvjUlHWeER7DAZDET5Emr8bY0ZegxwfCNpriUlQLewA/NXhDPVLS13ghA2L6DGi+gytImWI+Awl0MACTYU5gjweGh/bopWJhDlF7IvgsMcR3+GMSoJfpUQWnkcPen3n66e9/69ubzbXI5ug4j83N4PEHexFAmKTXmPD+iPdD8mOZWw2xFEJetl2DrkZIT1ObbCGC4izCMA1oPNCCDKskJS4xHl1KyjzqYchRyCgCz6JIQgpfE8eRGLCdhmAAWguc82fd+hSUZfjw2KffAhZRTfRNPYCJ+KjOPV0h9KZS6dOf+eynf+Pzo+OjUODC6+fuvOc+QZiXzp8fHZP5aUTyIZlqDJOIxKD67NNPf+Tjn3CmLIGX0UtgF/GJukqz0AmeZJ5EYAyLTjhl27g8eucesQwMkMAl+hlnqAdX0s89RziK7nAOPL4djJx0lAYWcAgGEjHEYXMKpSHCb1p4VmYkBHnPXRmW+AqyLjfZk3eIPV55GwTScOBOuqCwzXIBzICjLJktyEvo85lJuCYWKYdhQAvbPXSNjo0uXJn7m2988zvf+Y48QMQiFmDoob2Y2qAugd0xv+5jLLHO/ITyA4S2rH1PVQUOxh+sI+n26a14/YbM4nsSyRP2JitDgAWthmeRbckAkQ3I6UECbow3A5NPV/CaOFMN5QnrQPwcaHQTjuqPSiwqBD9+hKqc9fTHxz741Ge/+EUmD6GUw7EZQ5STlOc5tjvs1SJENrzC2W76jShbdVr01SzS1VC+PUlIuKXLdTOsCROspG4oxmyk56zJhB7Pw6xFcY8rhAoFAm9sOZGgO6S0RHhTvwHTfwqkoQT2u8CQj9JD72av+/Tcp07eesXPP8t1A4G8ojq9z66EPGY0ABfRnwmgWJiWDAb2GEfIAYlcZZ9wyFum3E8so7aaiPKav3z1z7/0Zxcvvba+QR7MidRMRCJGFUbXkK6CaQYI0khgqdcDAKkzUSATTmPtx8OsJzHgACKA+Z8rKvisN1JVaAaiUgYY/Qm4xr7jIgqYiBHmE0P2flK+EllhEMJMPMysl2mwymSXOr3ucmxP9Ie3oduTDej3/uf//IrDePP5xz/2MadtMEDaqzQ0OLi2skrlEY0FkmDloFY3wDIka0Cc/dOMTtr6X5Pksq/V2DSvXQ4XtkmnoYjISSmXACSJknFUqnuWmiAoCYmJ/9l8e46cO7A8QwutJKi8gRCq8sRzIFXYlb2YfRpdVuDwoa8/x3UDgTJgZY1lA87a07akeWbCmD3XANqg5yIMBfCglMgPnMlsP0ZrMOZE/ACdy7w64aEhRXFz89lnnrk6d9UZCCFE7KU4jWBSlnZaIgk7ovcmNrqSbtJo0gwHNqVvflTUa/GWfwN/gieGHESyd6U1BhNww6AcLjiarrALhESQlqnR+RYGAMWCNXka0p/mtOQLKyezrRREcoU89OSH7n/o/j/6N/8vrMLBLh/5xCee/PCvTM+ewNq7e62R8TF83NiRHKtobXWVKyroTLEgMKJ+A4GcOxPNOyDFhKkaFHJ724S52tgUiQGcLcuAeVoJSFQMvJcT7EE0JChcm58bGhwSmUT1zgau7yApT5R4QgM0R7DcTyrx6YoBZiCIBZMW201k8Ty7zW58/tzXDSH68H0Q1xtffWrDGHTIZfA2O6WZ0NcdapUfIRO5H6JIWWKRAQEImrE0N6SKkHiksxPx+eTHPn73ytJrL/xwzlkFrY7FCmbKBzkOrMnoS7TtXWgRfUgkIf0aEHelTmbrLOzxniYO3LXvJvUXswOpgJof8SbUXv/1Uf9VnV4gdUUNJgzEg5RC43iHiI2yODVcZiVT1n3iyV8RgfiNr3/53gfu+83PffHk6VNjwxNycz71kQ8Pj48RiMgs5kQNFrixi/gO8ru3N+PcA14SalQkaQRAuB4wRAiAixir8iC0BKm9zsjQkF5aSuQk069XJp1BUg+zleM4R4KRr9Jag4uqsgFiX2AWVp2EJQGyxGE15CaDQALXG2gUdaZi2a/ZCswKZyV/vs+3IlBWi364ARA3RDbTaWxgHswixH/p30FHYg30OZymZiP2p7nC8QQykVzYi6aS6eLq5Quc88OTMx/6+K//Cutfp3Pu9bMv/ugHgnPlmGKdTSKvScwGlegLTo95BYGgcEWnQvgNSiH5K2whrIfvAhADIUjWwZhAI9EVrIEU6kSjZK2u1SEQiSoIEeNWICupCCwDnKJeys5dcEY4Xfzxpz7xmc9+zjaOP/2jP/7sF3/HUWUjI0OPf+hDp+84ZSwnTn0+pDgkQpMRrhf7YwhgsnVYJ6mPZjfHQBfd1Rml7MGRsj7IZBG+gBjxmeFM3CWMqY5OOEQcPBFx2AM3gC8NPjh1LIIgheHdBHqgzWYBZQkox5K2NgI/MsxQt2YPEQIoXdlPhzdR7c3LT66b337+f29OmiGn62Yvw/bjgSZhfYK5JIWxY8sTqoGRIUjudR9vRsCZQ5RLSmaMJFs3lHbqgpOUBuqD4tiB3o4VKqU0F/bELFy59MPvfZd0QnkBbHBWXZIWTY11SnjPKIo+cEki7+ZMr2LHJyFSNIvdCghHhg+Aly1HcAljUuS7iEhCwpaKmJkiyx51jhckgjoYHCof//Rnjs2e+t63/4YLZmlp/g//+f/iwx/9KJbw7LPPcl+TYJylpzYNJCRJc5WoMrqSeUaVyRgH0mu9JZEuIwBhDs3Yii5k8xNYwroQu0FtjEweG30O5M6iGUPozF7x6+Fb2bsqNzXuE+pEhVkBX7NpcnMrQijsitHf5Gh+vbVAVu0v/vkGAqlLV7Sa3UCgrHYPXdm94QUBiLXfY351J0bVawqbMgDGzUkk2dYZ2TeY13gWIBN8sLHL/h4F7Ubl45APK1KR7Dqwc3VpeWn5+nWZGGybNyXKsBEYrfFrOg0cSfefdhERGo3/WPFD5U8zEjZPiOKFWLUgKacH0VQ8KDSK4Nu+rXVHeu30BekqPvmRp77wO/9IEkn7ModGaitsnBsbLLi1odqUU+OqA4R9nuCpqalskvQHkUE9MlxRmycGBRqZQwAcjB8OJf4SHm8dgSgZJDPomUhhdFYG7FFDBk9o4desWpDHEP3kiXazVjIkUFiLaoBYnnvoU5nsV/cK+MyurOas0ZvPbjSX/fT3+/lWFqZb+qqNDHZu9PKwN3g8CUj4mh6xBQKcgUIuBQLKxUg3SYARGIPiIOOBTt3u6OAQSJ3fvCCWnqODRd80U8139g7yxerg6CSzj8TNG6tr1YFhPmTb/a9fu4KYazvEExtyEQ7HTaZT3+SEh0NQ3VnKxA9KNcH29KP3r8zNr60tRr5piS/Lg/ecPvNrv/659dW1M3ecdujW333zW+fPvmQj0e/+l78/e+rk0PCgxSnRlUMNUQFBnieOzSB/Rmfu2IRwZwog1hPELHhlwMEYDzlFIEQ4AsLc4Nc0/BBizFmwl5Dq4x8DV9Llp2B5iRopEyVScIV31aAYNFKbklmFnivjPnslu8kQ4tYCinno89Yre/KWwrcW+Hu8fxMFUq/OgVR2k3U0e+IT1RFtYF9mfkA8MRwieN6ArB8trEwLzUBjUJntXFUJBPm11XXpfxEYcPdJKsL7neH0wgsvrC8vXZu7Oj41SWUbHRtaun51/uplwetgHtIGuYomQsWQCDuX3+uKDerwHu0d9M2cPPOpT35qY6vxmX/0u9/6n75GZSSbOO/yzrvuefCJJ0AwO5Kc8ry2vi5VBXIVJ5vF5CFaufn5ha3tcDJMTIzXnEISlhWW3ODaNmmZcjSGMSIhQIggBpJRC8TGQ/PtoVYyEGXIlA0/wJVop8/sCThkhTP+dYh5h6BW0sNs1j10k5V3k5XJbtxn12HJmw/e+Dd71/cE+Tee/zLu3gaBNBOjv3llXw3GDYzpON+GDbpet4o8BGWXsomAx74FUMheMYzs15twsa2sBcmAPhE1dr88NdX2p2sX5+YuXv7gJz969rkXv//9718479T1DUkGoafs4kyFY5PTZ+65T/KJ1158IY62y+c/8/kv7vX6H/vgk/fdf5dAQrvyNGbP3UsvnLNX4oEH76ehoHaJqwVLg/1J1M2m01xa9N3NjW1mIiufbV+vYDYECtxiweP7DK1hXxyWnwzQZLjJBuUTJt2EUKyi7Fc3Lr/6Kbv3PCvmYfY8q8p9BlLFsmn2xL2H2Vf3WSXxWqrQZ1Zn9vmWr7f+lN0fvv7jP/09PnljqLdWahhZ8z6zm2y0iHAQKMa0tLU5K2aZwh73ye4eXFxVWfns3qdLPRZfItTmI6DmCdJtrdOALPNQkQ56164uOMDbjknnFq5en1+an5s6PvuF3/t9O8v4Q+S7TPHU+XseeJAVGK/ReOi2sROez4zYQVDyIKIewv1AtcMGxdCm4499VRaSJCkuAjCguC4FcwmuQjiNiddb/l/dE9qTfXUPvbJxuVcgQyb3avDcV5evruwGBFSopF89zOrxmV3Zc/eKuc8uX5V0f6NQ+uctX2/96f1w//YIpGcBiXRl9xlC+MxuAFkR92CUmaRNA8AZbVbAJ8TKQJkmJowCJsw0uDxRN9Arg4jBBK9ryKyzTNrXasuh3NBSyF94+Yf0pac+/Rm2XRSLSu8d73oxe8Vb2kocgcF3lxwGhzyxt4J8lBf2W3DGZWjHIZKkGfWZDUp/1KPPGdX0XM2+ulGDzh+WVD4r47n7bFKzX33NnmQP1ZA9V/LW1/3qp6zwW8pnL2YPfR4WO3x++Nb78OZNo7q1f9kwMnhlo/LEVxDPimUQ8enhIepkb/mEHIdw9NVU0XvDdyi0OwXnesvD7F1z41JMC4xMkIq2TkKNoMW9g/ZOuzo8GLLxTbTL3vKptuyhF7XJ529TSxbRwWJ15fVXF65euPvRR+XpUj9yxA9966zopEurGa5k6O7TQ8XcZE1kyKoGD/2kRdchENx4rpLsSfb11l+zewVubfqw2I8/z8r/Q/l8qxb2ln5nY86g496VDRgE3bgAFCXInvuaigSUQV9VbjxEe1whOCdn4eHEIEVZDYdI6RXTL4BiP44cIGc4OzJicdQDfRSOAjelV1+zGhI+4WWIIst4MBo4uLy8QKsaGhpfub5ot/ypU6eU122FXbDBp5LZQ88P8SN77qcol9ZGNkBPFNMrN9kw3Rxefjq8z26ykocP3/L1ts8PC7zPb960dH68r9mc+Ty8TDZguUyq8kDs3k1WILvxxNesNjcZGpl4V/bQW24On2cPD2clq4pg63kQvSSqH77r4WH9SuqPn7InasjepbU1mjtCHThTuJ94IW0h1Vm4p1GFs9qyt3yq5PDdwxsNwSqfniifvZL96tPzw+stXw+f/+dw804RCCyyufH543Axx9nzw1/fAmgFPMkeKuNrNm1mxSR54sp+9al+v2ZflTS72axnJf2aUQuv+BVtU4nynmevROGbHjFiNFsA6RumKZMhQVY4ayW7V0/qQnx47spuMjFLtYr5dGW/Zp/KvOXJrb/+Z3L/jlgYWNwKrMN7Ny6/guPh/SHgAt7p+vHXs5WdSdPZr4dvucmm2aRmD7Oa1eTrjRpvTqSv5lgBNxkSuFG5Gg6fMDgifAljA8n8lCFi9pZibjzPMOnwYdZW9vywjK+3Xp7f+vU/z/vbUKBDoGRQPvzMYOeraXMp5kl279N9tnbdmxgXqpBV5RVfD++zehTLnmeV+DxsyE127y3PswsSeOgt9WS/Zl/9Go2l69af3B9yXvd+9+lS3ufhu+nZjYfus2JZmeyno88fh8BtKNDhCxkcDyGePT8E7uEseg7u2SrPMOkQOZRx+dVb2ZU98crNB29gc1YsK5C9lRU7/MwaurWGbL49d6nw8K1bnxw2lJU5/Mnzw/vs5tYCh0+Obn4cAm/M2Y//9lOemB6/ZvOU3fuakYTs+eG72a+H5bPn2UQevnh4c/jW4Yxmtf14gaxkhp1vecu7kMkrWSvZr7fWkFXu8/Bh9uSwnqObdw6BN4D4zt+5teThHPykh1kBn4fT9pNKen44kcpnSHBr4VvvFXB5kn26OaRAh5Uc3tz6ovuf9PwtxY6+vhMI/KII9NPbOJzj7MbMvWXyPM+eHBb46RUe/nr4oic/6d23tHX47tHN3yMEfrkIdNjRjLtlM/q283orQhy+9VNuftbyP6Wqo59+EQi8Swj0i3Tx6N33MwRuKLTv5y4e9e39DIEjBHo/z84/gL4dIdA/gEl6P3fxCIHez7PzD6BvRwj0D2CS3s9dPEKg9/Ps/APo2xEC/QOYpPdzF48Q6P08O/8A+vb/BwQ0KkYUnslIAAAAAElFTkSuQmCC",
      "text/plain": [
       "PILImage mode=RGB size=192x192"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "img = PILImage.create(f'image-01.jpg')\n",
    "img.thumbnail((192,192))\n",
    "img"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Army boots tensor([9.9534e-01, 6.6745e-07, 2.7946e-05, 4.6439e-07, 8.5000e-07, 1.9539e-06,\n",
      "        1.9182e-05, 4.1536e-07, 4.8163e-07, 2.0532e-05, 4.2236e-07, 3.7513e-08,\n",
      "        8.4607e-07, 1.7847e-05, 1.0798e-04, 4.6415e-04, 3.5177e-03, 1.5300e-05,\n",
      "        2.4203e-07, 4.3307e-05, 3.7628e-05, 1.5838e-05, 3.8547e-07, 1.6339e-06,\n",
      "        8.6669e-06, 1.7185e-09, 1.4663e-06, 1.0363e-06, 1.3505e-04, 4.8500e-06,\n",
      "        2.4733e-06, 4.3966e-06, 3.8433e-05, 2.3730e-05, 5.8067e-06, 1.3946e-04])\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'Army boots': 0.9953387975692749,\n",
       " 'Ballet flats': 6.674546852991625e-07,\n",
       " 'Basketball shoes': 2.7945659894612618e-05,\n",
       " 'Brogues': 4.643915758606454e-07,\n",
       " 'Chelsea Boot': 8.50004255426029e-07,\n",
       " 'Chuck Taylor': 1.953886567207519e-06,\n",
       " 'Climbing shoes': 1.918196903716307e-05,\n",
       " 'Cone heels': 4.1535633954481455e-07,\n",
       " 'Court shoes': 4.816292857867666e-07,\n",
       " 'Cowboy boots': 2.0531964764813893e-05,\n",
       " 'Derby shoes': 4.223589940011152e-07,\n",
       " 'Dress shoe': 3.75131357088776e-08,\n",
       " 'Flip flop': 8.460736466986418e-07,\n",
       " 'Golf shoes': 1.7847174603957683e-05,\n",
       " 'High heels': 0.00010797676077345386,\n",
       " 'High-tops shoes': 0.00046415452379733324,\n",
       " 'Hiking boots': 0.003517678938806057,\n",
       " 'Ice-skates shoes': 1.5299558072001673e-05,\n",
       " 'Kitten heels': 2.4202694248742773e-07,\n",
       " 'Knee high boots': 4.330678711994551e-05,\n",
       " 'Laced booties': 3.76277748728171e-05,\n",
       " 'Lita shoe': 1.5837556929909624e-05,\n",
       " 'Loafer': 3.85474692166099e-07,\n",
       " 'Mary Jane platforms': 1.6338588011421962e-06,\n",
       " 'Moccasin': 8.666859685035888e-06,\n",
       " 'Mule shoes': 1.7184587086660486e-09,\n",
       " 'Old skool': 1.4663244201074122e-06,\n",
       " 'Oxford shoe': 1.0362574585087714e-06,\n",
       " 'Platform heels': 0.00013505437527783215,\n",
       " 'Running shoes': 4.850002369494177e-06,\n",
       " 'Sandal': 2.473293761795503e-06,\n",
       " 'Sneakers ': 4.396596978040179e-06,\n",
       " 'Soccer shoes': 3.843283775495365e-05,\n",
       " 'Uggs': 2.372959534113761e-05,\n",
       " 'Wedges shoe': 5.806686203868594e-06,\n",
       " 'Wellington boots': 0.0001394600694766268}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "recognize_image(img)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_27716\\498370115.py:1: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
      "  image = gr.inputs.Image(shape=(192,192))\n",
      "C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_27716\\498370115.py:1: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n",
      "  image = gr.inputs.Image(shape=(192,192))\n",
      "C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_27716\\498370115.py:2: GradioDeprecationWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
      "  label = gr.outputs.Label(num_top_classes=5)\n",
      "C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_27716\\498370115.py:2: GradioUnusedKwargWarning: You have unused kwarg parameters in Label, please remove them: {'type': 'auto'}\n",
      "  label = gr.outputs.Label(num_top_classes=5)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7862\n",
      "Running on public URL: https://03b7f2d43d8c98bf5d.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "image = gr.inputs.Image(shape=(192,192))\n",
    "label = gr.outputs.Label(num_top_classes=5)\n",
    "examples = [\n",
    "    'image-01.jpg',\n",
    "    'image-02.jpg',\n",
    "    'image-03.jpg',\n",
    "    'image-06.jpg',\n",
    "    'image-07.jpg',\n",
    "    'image-08.jpg',\n",
    "    'image-09.jpg',\n",
    "    'image-10.jpg'      \n",
    "    ]\n",
    "\n",
    "iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples)\n",
    "iface.launch(inline=False, share=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "^C\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "This application is used to convert notebook files (*.ipynb)\n",
      "        to various other formats.\n",
      "\n",
      "        WARNING: THE COMMANDLINE INTERFACE MAY CHANGE IN FUTURE RELEASES.\n",
      "\n",
      "Options\n",
      "=======\n",
      "The options below are convenience aliases to configurable class-options,\n",
      "as listed in the \"Equivalent to\" description-line of the aliases.\n",
      "To see all configurable class-options for some <cmd>, use:\n",
      "    <cmd> --help-all\n",
      "\n",
      "--debug\n",
      "    set log level to logging.DEBUG (maximize logging output)\n",
      "    Equivalent to: [--Application.log_level=10]\n",
      "--show-config\n",
      "    Show the application's configuration (human-readable format)\n",
      "    Equivalent to: [--Application.show_config=True]\n",
      "--show-config-json\n",
      "    Show the application's configuration (json format)\n",
      "    Equivalent to: [--Application.show_config_json=True]\n",
      "--generate-config\n",
      "    generate default config file\n",
      "    Equivalent to: [--JupyterApp.generate_config=True]\n",
      "-y\n",
      "    Answer yes to any questions instead of prompting.\n",
      "    Equivalent to: [--JupyterApp.answer_yes=True]\n",
      "--execute\n",
      "    Execute the notebook prior to export.\n",
      "    Equivalent to: [--ExecutePreprocessor.enabled=True]\n",
      "--allow-errors\n",
      "    Continue notebook execution even if one of the cells throws an error and include the error message in the cell output (the default behaviour is to abort conversion). This flag is only relevant if '--execute' was specified, too.\n",
      "    Equivalent to: [--ExecutePreprocessor.allow_errors=True]\n",
      "--stdin\n",
      "    read a single notebook file from stdin. Write the resulting notebook with default basename 'notebook.*'\n",
      "    Equivalent to: [--NbConvertApp.from_stdin=True]\n",
      "--stdout\n",
      "    Write notebook output to stdout instead of files.\n",
      "    Equivalent to: [--NbConvertApp.writer_class=StdoutWriter]\n",
      "--inplace\n",
      "    Run nbconvert in place, overwriting the existing notebook (only\n",
      "            relevant when converting to notebook format)\n",
      "    Equivalent to: [--NbConvertApp.use_output_suffix=False --NbConvertApp.export_format=notebook --FilesWriter.build_directory=]\n",
      "--clear-output\n",
      "    Clear output of current file and save in place,\n",
      "            overwriting the existing notebook.\n",
      "    Equivalent to: [--NbConvertApp.use_output_suffix=False --NbConvertApp.export_format=notebook --FilesWriter.build_directory= --ClearOutputPreprocessor.enabled=True]\n",
      "--no-prompt\n",
      "    Exclude input and output prompts from converted document.\n",
      "    Equivalent to: [--TemplateExporter.exclude_input_prompt=True --TemplateExporter.exclude_output_prompt=True]\n",
      "--no-input\n",
      "    Exclude input cells and output prompts from converted document.\n",
      "            This mode is ideal for generating code-free reports.\n",
      "    Equivalent to: [--TemplateExporter.exclude_output_prompt=True --TemplateExporter.exclude_input=True --TemplateExporter.exclude_input_prompt=True]\n",
      "--allow-chromium-download\n",
      "    Whether to allow downloading chromium if no suitable version is found on the system.\n",
      "    Equivalent to: [--WebPDFExporter.allow_chromium_download=True]\n",
      "--disable-chromium-sandbox\n",
      "    Disable chromium security sandbox when converting to PDF..\n",
      "    Equivalent to: [--WebPDFExporter.disable_sandbox=True]\n",
      "--show-input\n",
      "    Shows code input. This flag is only useful for dejavu users.\n",
      "    Equivalent to: [--TemplateExporter.exclude_input=False]\n",
      "--embed-images\n",
      "    Embed the images as base64 dataurls in the output. This flag is only useful for the HTML/WebPDF/Slides exports.\n",
      "    Equivalent to: [--HTMLExporter.embed_images=True]\n",
      "--sanitize-html\n",
      "    Whether the HTML in Markdown cells and cell outputs should be sanitized..\n",
      "    Equivalent to: [--HTMLExporter.sanitize_html=True]\n",
      "--log-level=<Enum>\n",
      "    Set the log level by value or name.\n",
      "    Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']\n",
      "    Default: 30\n",
      "    Equivalent to: [--Application.log_level]\n",
      "--config=<Unicode>\n",
      "    Full path of a config file.\n",
      "    Default: ''\n",
      "    Equivalent to: [--JupyterApp.config_file]\n",
      "--to=<Unicode>\n",
      "    The export format to be used, either one of the built-in formats\n",
      "            ['asciidoc', 'custom', 'html', 'latex', 'markdown', 'notebook', 'pdf', 'python', 'qtpdf', 'qtpng', 'rst', 'script', 'slides', 'webpdf']\n",
      "            or a dotted object name that represents the import path for an\n",
      "            ``Exporter`` class\n",
      "    Default: ''\n",
      "    Equivalent to: [--NbConvertApp.export_format]\n",
      "--template=<Unicode>\n",
      "    Name of the template to use\n",
      "    Default: ''\n",
      "    Equivalent to: [--TemplateExporter.template_name]\n",
      "--template-file=<Unicode>\n",
      "    Name of the template file to use\n",
      "    Default: None\n",
      "    Equivalent to: [--TemplateExporter.template_file]\n",
      "--theme=<Unicode>\n",
      "    Template specific theme(e.g. the name of a JupyterLab CSS theme distributed\n",
      "    as prebuilt extension for the lab template)\n",
      "    Default: 'light'\n",
      "    Equivalent to: [--HTMLExporter.theme]\n",
      "--sanitize_html=<Bool>\n",
      "    Whether the HTML in Markdown cells and cell outputs should be sanitized.This\n",
      "    should be set to True by nbviewer or similar tools.\n",
      "    Default: False\n",
      "    Equivalent to: [--HTMLExporter.sanitize_html]\n",
      "--writer=<DottedObjectName>\n",
      "    Writer class used to write the\n",
      "                                        results of the conversion\n",
      "    Default: 'FilesWriter'\n",
      "    Equivalent to: [--NbConvertApp.writer_class]\n",
      "--post=<DottedOrNone>\n",
      "    PostProcessor class used to write the\n",
      "                                        results of the conversion\n",
      "    Default: ''\n",
      "    Equivalent to: [--NbConvertApp.postprocessor_class]\n",
      "--output=<Unicode>\n",
      "    overwrite base name use for output files.\n",
      "                can only be used when converting one notebook at a time.\n",
      "    Default: ''\n",
      "    Equivalent to: [--NbConvertApp.output_base]\n",
      "--output-dir=<Unicode>\n",
      "    Directory to write output(s) to. Defaults\n",
      "                                  to output to the directory of each notebook. To recover\n",
      "                                  previous default behaviour (outputting to the current\n",
      "                                  working directory) use . as the flag value.\n",
      "    Default: ''\n",
      "    Equivalent to: [--FilesWriter.build_directory]\n",
      "--reveal-prefix=<Unicode>\n",
      "    The URL prefix for reveal.js (version 3.x).\n",
      "            This defaults to the reveal CDN, but can be any url pointing to a copy\n",
      "            of reveal.js.\n",
      "            For speaker notes to work, this must be a relative path to a local\n",
      "            copy of reveal.js: e.g., \"reveal.js\".\n",
      "            If a relative path is given, it must be a subdirectory of the\n",
      "            current directory (from which the server is run).\n",
      "            See the usage documentation\n",
      "            (https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow)\n",
      "            for more details.\n",
      "    Default: ''\n",
      "    Equivalent to: [--SlidesExporter.reveal_url_prefix]\n",
      "--nbformat=<Enum>\n",
      "    The nbformat version to write.\n",
      "            Use this to downgrade notebooks.\n",
      "    Choices: any of [1, 2, 3, 4]\n",
      "    Default: 4\n",
      "    Equivalent to: [--NotebookExporter.nbformat_version]\n",
      "\n",
      "Examples\n",
      "--------\n",
      "\n",
      "    The simplest way to use nbconvert is\n",
      "\n",
      "            > jupyter nbconvert mynotebook.ipynb --to html\n",
      "\n",
      "            Options include ['asciidoc', 'custom', 'html', 'latex', 'markdown', 'notebook', 'pdf', 'python', 'qtpdf', 'qtpng', 'rst', 'script', 'slides', 'webpdf'].\n",
      "\n",
      "            > jupyter nbconvert --to latex mynotebook.ipynb\n",
      "\n",
      "            Both HTML and LaTeX support multiple output templates. LaTeX includes\n",
      "            'base', 'article' and 'report'.  HTML includes 'basic', 'lab' and\n",
      "            'classic'. You can specify the flavor of the format used.\n",
      "\n",
      "            > jupyter nbconvert --to html --template lab mynotebook.ipynb\n",
      "\n",
      "            You can also pipe the output to stdout, rather than a file\n",
      "\n",
      "            > jupyter nbconvert mynotebook.ipynb --stdout\n",
      "\n",
      "            PDF is generated via latex\n",
      "\n",
      "            > jupyter nbconvert mynotebook.ipynb --to pdf\n",
      "\n",
      "            You can get (and serve) a Reveal.js-powered slideshow\n",
      "\n",
      "            > jupyter nbconvert myslides.ipynb --to slides --post serve\n",
      "\n",
      "            Multiple notebooks can be given at the command line in a couple of\n",
      "            different ways:\n",
      "\n",
      "            > jupyter nbconvert notebook*.ipynb\n",
      "            > jupyter nbconvert notebook1.ipynb notebook2.ipynb\n",
      "\n",
      "            or you can specify the notebooks list in a config file, containing::\n",
      "\n",
      "                c.NbConvertApp.notebooks = [\"my_notebook.ipynb\"]\n",
      "\n",
      "            > jupyter nbconvert --config mycfg.py\n",
      "\n",
      "To see all available configurables, use `--help-all`.\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[NbConvertApp] WARNING | pattern 'appNB.ipynb' matched no files\n"
     ]
    }
   ],
   "source": [
    "# !jupyter nbconvert --to script appNB.ipynb"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.5"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}