File size: 4,874 Bytes
34df8ca
 
 
 
 
 
 
e1a3efa
 
 
 
 
 
 
 
 
 
34df8ca
e1a3efa
34df8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a3efa
34df8ca
 
 
 
 
 
 
 
 
e1a3efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34df8ca
 
 
 
e1a3efa
 
 
 
 
 
 
34df8ca
e1a3efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34df8ca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.preprocessing import LabelEncoder
import gradio as gr
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input
from tensorflow.keras.optimizers import Adam
from PIL import Image
import rasterio
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model

# Load crop data
def load_data():
    url = 'https://raw.githubusercontent.com/NarutoOp/Crop-Recommendation/master/cropdata.csv'
    data = pd.read_csv(url)
    return data

data = load_data()

label_encoders = {}
for column in ['STATE', 'CROP']:
    le = LabelEncoder()
    data[column] = le.fit_transform(data[column])
    label_encoders[column] = le

X = data[['YEAR', 'STATE', 'CROP', 'YEILD']]  # Feature columns
y = data['PROFIT']  # Target column

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

models = {
    'Linear Regression': LinearRegression(),
    'SVR': SVR(),
    'Random Forest': RandomForestRegressor(),
    'Gradient Boosting': GradientBoostingRegressor()
}

for name, model in models.items():
    model.fit(X_train, y_train)

def predict_traditional(model_name, year, state, crop, yield_):
    if model_name in models:
        model = models[model_name]
        state_encoded = label_encoders['STATE'].transform([state])[0]
        crop_encoded = label_encoders['CROP'].transform([crop])[0]
        prediction = model.predict([[year, state_encoded, crop_encoded, yield_]])[0]
        return prediction
    else:
        return "Model not found"

# Load pre-trained deep learning models
def load_deep_learning_model(model_name):
    base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
    base_model.trainable = False

    inputs = Input(shape=(128, 128, 3))
    x = base_model(inputs, training=False)
    x = GlobalAveragePooling2D()(x)
    outputs = Dense(1, activation='linear')(x)

    model = Model(inputs, outputs)
    model.compile(optimizer=Adam(), loss='mean_squared_error', metrics=['mae'])

    return model

deep_learning_models = {
    'ResNet50': load_deep_learning_model('ResNet50'),
    # Add other models here if needed
}

def predict_deep_learning(model_name, file):
    if model_name in deep_learning_models:
        if file is not None:
            with rasterio.open(file.name) as src:
                img_data = src.read(1)

            patch_size = 128
            n_patches_x = img_data.shape[1] // patch_size
            n_patches_y = img_data.shape[0] // patch_size

            patches = []
            for i in range(n_patches_y):
                for j in range(n_patches_x):
                    patch = img_data[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size]
                    patches.append(patch)
            patches = np.array(patches)

            preprocessed_patches = []
            for patch in patches:
                img = Image.fromarray(patch)
                img = img.convert('RGB')
                img = img.resize((128, 128))
                img_array = np.array(img) / 255.0
                preprocessed_patches.append(img_array)
            preprocessed_patches = np.array(preprocessed_patches)

            model = deep_learning_models[model_name]
            predictions = model.predict(preprocessed_patches)
            predictions = predictions.reshape((n_patches_y, n_patches_x))

            return predictions
        else:
            return "No file uploaded"
    else:
        return "Model not found"

inputs_traditional = [
    gr.Dropdown(choices=list(models.keys()), label='Model'),
    gr.Number(label='Year'),
    gr.Textbox(label='State'),
    gr.Textbox(label='Crop'),
    gr.Number(label='Yield'),
]
outputs_traditional = gr.Textbox(label='Predicted Profit')

inputs_deep_learning = [
    gr.Dropdown(choices=list(deep_learning_models.keys()), label='Model'),
    gr.File(label='Upload TIFF File')
]
outputs_deep_learning = gr.Textbox(label='Predictions')

with gr.Blocks() as demo:
    with gr.Tab("Traditional ML Models"):
        gr.Interface(
            fn=predict_traditional,
            inputs=inputs_traditional,
            outputs=outputs_traditional,
            title="Profit Prediction using Traditional ML Models"
        ).launch()
        
    with gr.Tab("Deep Learning Models"):
        gr.Interface(
            fn=predict_deep_learning,
            inputs=inputs_deep_learning,
            outputs=outputs_deep_learning,
            title="Crop Yield Prediction using Deep Learning Models"
        ).launch()

demo.launch()