sanket09's picture
Update app.py
3e7b16e verified
raw
history blame
6.63 kB
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.preprocessing import LabelEncoder
import gradio as gr
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input
from tensorflow.keras.optimizers import Adam
from PIL import Image
import rasterio
import matplotlib.pyplot as plt
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
import cv2
import joblib
# Load crop data
def load_data():
url = 'https://raw.githubusercontent.com/NarutoOp/Crop-Recommendation/master/cropdata.csv'
data = pd.read_csv(url)
return data
data = load_data()
label_encoders = {}
for column in ['STATE', 'CROP']:
le = LabelEncoder()
data[column] = le.fit_transform(data[column])
label_encoders[column] = le
X = data[['YEAR', 'STATE', 'CROP', 'YEILD']] # Feature columns
y = data['PROFIT'] # Target column
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
models = {
'Linear Regression': LinearRegression(),
'SVR': SVR(),
'Random Forest': RandomForestRegressor(),
'Gradient Boosting': GradientBoostingRegressor()
}
for name, model in models.items():
model.fit(X_train, y_train)
def predict_traditional(model_name, year, state, crop, yield_):
if model_name in models:
model = models[model_name]
state_encoded = label_encoders['STATE'].transform([state])[0]
crop_encoded = label_encoders['CROP'].transform([crop])[0]
prediction = model.predict([[year, state_encoded, crop_encoded, yield_]])[0]
return prediction
else:
return "Model not found"
# Load the pre-trained RandomForestRegressor model
rf_model = joblib.load('crop_yield_model.joblib')
def predict_random_forest(file):
if file is not None:
def process_tiff(file_path):
with rasterio.open(file_path) as src:
tiff_data = src.read()
B2_image = tiff_data[1, :, :]
target_size = (50, 50)
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
return B2_resized.reshape(-1, 1)
tiff_processed = process_tiff(file.name)
prediction = rf_model.predict(tiff_processed)
prediction_reshaped = prediction.reshape((50, 50))
plt.figure(figsize=(10, 10))
plt.imshow(prediction_reshaped, cmap='viridis')
plt.colorbar()
plt.title('Yield Prediction for Single TIFF File')
plt.savefig('/tmp/rf_prediction_overlay.png')
return '/tmp/rf_prediction_overlay.png'
else:
return "No file uploaded"
# Load deep learning models
def load_deep_learning_model(model_name):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))
base_model.trainable = False
inputs = Input(shape=(128, 128, 3))
x = base_model(inputs, training=False)
x = GlobalAveragePooling2D()(x)
outputs = Dense(1, activation='linear')(x)
model = Model(inputs, outputs)
model.compile(optimizer=Adam(), loss='mean_squared_error', metrics=['mae'])
return model
deep_learning_models = {
'ResNet50': load_deep_learning_model('ResNet50'),
# Add other models here if needed
}
def predict_deep_learning(model_name, file):
if model_name in deep_learning_models:
if file is not None:
with rasterio.open(file.name) as src:
img_data = src.read(1)
patch_size = 128
n_patches_x = img_data.shape[1] // patch_size
n_patches_y = img_data.shape[0] // patch_size
patches = []
for i in range(n_patches_y):
for j in range(n_patches_x):
patch = img_data[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size]
patches.append(patch)
patches = np.array(patches)
preprocessed_patches = []
for patch in patches:
img = Image.fromarray(patch)
img = img.convert('RGB')
img = img.resize((128, 128))
img_array = np.array(img) / 255.0
preprocessed_patches.append(img_array)
preprocessed_patches = np.array(preprocessed_patches)
model = deep_learning_models[model_name]
predictions = model.predict(preprocessed_patches)
predictions = predictions.reshape((n_patches_y, n_patches_x))
threshold = np.percentile(predictions, 90)
overlay = np.zeros_like(img_data, dtype=np.float32)
for i in range(n_patches_y):
for j in range(n_patches_x):
if predictions[i, j] > threshold:
overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j]
plt.figure(figsize=(10, 10))
plt.imshow(img_data, cmap='gray', alpha=0.5)
plt.imshow(overlay, cmap='jet', alpha=0.5)
plt.title('Crop Yield Prediction Overlay')
plt.savefig('/tmp/dl_prediction_overlay.png')
return '/tmp/dl_prediction_overlay.png'
else:
return "No file uploaded"
elif model_name == 'Random Forest':
return predict_random_forest(file)
else:
return "Model not found"
inputs_traditional = [
gr.Dropdown(choices=list(models.keys()), label='Model'),
gr.Number(label='Year'),
gr.Textbox(label='State'),
gr.Textbox(label='Crop'),
gr.Number(label='Yield'),
]
outputs_traditional = gr.Textbox(label='Predicted Profit')
inputs_deep_learning = [
gr.Dropdown(choices=list(deep_learning_models.keys()) + ['Random Forest'], label='Model'),
gr.File(label='Upload TIFF File')
]
outputs_deep_learning = gr.Image(label='Prediction Overlay')
with gr.Blocks() as demo:
with gr.Tab("Traditional ML Models"):
gr.Interface(
fn=predict_traditional,
inputs=inputs_traditional,
outputs=outputs_traditional,
title="Profit Prediction using Traditional ML Models"
)
with gr.Tab("Deep Learning Models"):
gr.Interface(
fn=predict_deep_learning,
inputs=inputs_deep_learning,
outputs=outputs_deep_learning,
title="Crop Yield Prediction using Deep Learning Models and Random Forest"
)
demo.launch()