Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ def train_random_forest_model():
|
|
67 |
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
|
68 |
return B2_resized.reshape(-1, 1)
|
69 |
|
70 |
-
data_dir = 'Data'
|
71 |
X_list = []
|
72 |
y_list = []
|
73 |
|
@@ -164,19 +164,24 @@ def predict_deep_learning(model_name, file):
|
|
164 |
predictions = model.predict(preprocessed_patches)
|
165 |
predictions = predictions.reshape((n_patches_y, n_patches_x))
|
166 |
|
167 |
-
threshold
|
|
|
168 |
|
|
|
169 |
overlay = np.zeros_like(img_data, dtype=np.float32)
|
170 |
for i in range(n_patches_y):
|
171 |
for j in range(n_patches_x):
|
172 |
if predictions[i, j] > threshold:
|
173 |
overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j]
|
174 |
|
|
|
175 |
plt.figure(figsize=(10, 10))
|
176 |
plt.imshow(img_data, cmap='gray', alpha=0.5)
|
177 |
plt.imshow(overlay, cmap='jet', alpha=0.5)
|
178 |
plt.title('Crop Yield Prediction Overlay')
|
179 |
plt.colorbar()
|
|
|
|
|
180 |
plt.savefig('/tmp/dl_prediction_overlay.png')
|
181 |
|
182 |
return '/tmp/dl_prediction_overlay.png'
|
|
|
67 |
B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST)
|
68 |
return B2_resized.reshape(-1, 1)
|
69 |
|
70 |
+
data_dir = 'Data'
|
71 |
X_list = []
|
72 |
y_list = []
|
73 |
|
|
|
164 |
predictions = model.predict(preprocessed_patches)
|
165 |
predictions = predictions.reshape((n_patches_y, n_patches_x))
|
166 |
|
167 |
+
# Set a threshold to highlight areas with higher predicted yields
|
168 |
+
threshold = np.percentile(predictions, 90) # Adjust the percentile as needed
|
169 |
|
170 |
+
# Create an overlay image to visualize predictions
|
171 |
overlay = np.zeros_like(img_data, dtype=np.float32)
|
172 |
for i in range(n_patches_y):
|
173 |
for j in range(n_patches_x):
|
174 |
if predictions[i, j] > threshold:
|
175 |
overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j]
|
176 |
|
177 |
+
# Plot the overlay on the original image
|
178 |
plt.figure(figsize=(10, 10))
|
179 |
plt.imshow(img_data, cmap='gray', alpha=0.5)
|
180 |
plt.imshow(overlay, cmap='jet', alpha=0.5)
|
181 |
plt.title('Crop Yield Prediction Overlay')
|
182 |
plt.colorbar()
|
183 |
+
|
184 |
+
# Save the plot to a file
|
185 |
plt.savefig('/tmp/dl_prediction_overlay.png')
|
186 |
|
187 |
return '/tmp/dl_prediction_overlay.png'
|