Spaces:
Sleeping
Sleeping
this is pushing mew visual model to resnet50
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input
|
|
12 |
from tensorflow.keras.optimizers import Adam
|
13 |
from PIL import Image
|
14 |
import rasterio
|
|
|
15 |
from tensorflow.keras.applications import ResNet50
|
16 |
from tensorflow.keras.models import Model
|
17 |
|
@@ -104,7 +105,27 @@ def predict_deep_learning(model_name, file):
|
|
104 |
predictions = model.predict(preprocessed_patches)
|
105 |
predictions = predictions.reshape((n_patches_y, n_patches_x))
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
return "No file uploaded"
|
110 |
else:
|
@@ -123,7 +144,7 @@ inputs_deep_learning = [
|
|
123 |
gr.Dropdown(choices=list(deep_learning_models.keys()), label='Model'),
|
124 |
gr.File(label='Upload TIFF File')
|
125 |
]
|
126 |
-
outputs_deep_learning = gr.
|
127 |
|
128 |
with gr.Blocks() as demo:
|
129 |
with gr.Tab("Traditional ML Models"):
|
|
|
12 |
from tensorflow.keras.optimizers import Adam
|
13 |
from PIL import Image
|
14 |
import rasterio
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
from tensorflow.keras.applications import ResNet50
|
17 |
from tensorflow.keras.models import Model
|
18 |
|
|
|
105 |
predictions = model.predict(preprocessed_patches)
|
106 |
predictions = predictions.reshape((n_patches_y, n_patches_x))
|
107 |
|
108 |
+
# Set a threshold to highlight areas with higher predicted yields
|
109 |
+
threshold = np.percentile(predictions, 90) # Adjust the percentile as needed
|
110 |
+
|
111 |
+
# Create an overlay image to visualize predictions
|
112 |
+
overlay = np.zeros_like(img_data, dtype=np.float32)
|
113 |
+
for i in range(n_patches_y):
|
114 |
+
for j in range(n_patches_x):
|
115 |
+
if predictions[i, j] > threshold:
|
116 |
+
overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j]
|
117 |
+
|
118 |
+
# Plot the overlay on the original image
|
119 |
+
plt.figure(figsize=(10, 10))
|
120 |
+
plt.imshow(img_data, cmap='gray', alpha=0.5)
|
121 |
+
plt.imshow(overlay, cmap='jet', alpha=0.5)
|
122 |
+
plt.title('Crop Yield Prediction Overlay')
|
123 |
+
plt.colorbar()
|
124 |
+
|
125 |
+
# Save the plot to a file
|
126 |
+
plt.savefig('/tmp/prediction_overlay.png')
|
127 |
+
|
128 |
+
return '/tmp/prediction_overlay.png'
|
129 |
else:
|
130 |
return "No file uploaded"
|
131 |
else:
|
|
|
144 |
gr.Dropdown(choices=list(deep_learning_models.keys()), label='Model'),
|
145 |
gr.File(label='Upload TIFF File')
|
146 |
]
|
147 |
+
outputs_deep_learning = gr.Image(label='Prediction Overlay')
|
148 |
|
149 |
with gr.Blocks() as demo:
|
150 |
with gr.Tab("Traditional ML Models"):
|