import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.preprocessing import LabelEncoder import gradio as gr import os import numpy as np import tensorflow as tf from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Input from tensorflow.keras.optimizers import Adam from PIL import Image import rasterio import matplotlib.pyplot as plt from tensorflow.keras.applications import ResNet50 from tensorflow.keras.models import Model import cv2 import joblib # Load crop data def load_data(): url = 'https://raw.githubusercontent.com/NarutoOp/Crop-Recommendation/master/cropdata.csv' data = pd.read_csv(url) return data data = load_data() label_encoders = {} for column in ['STATE', 'CROP']: le = LabelEncoder() data[column] = le.fit_transform(data[column]) label_encoders[column] = le X = data[['YEAR', 'STATE', 'CROP', 'YEILD']] # Feature columns y = data['PROFIT'] # Target column X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) models = { 'Linear Regression': LinearRegression(), 'SVR': SVR(), 'Random Forest': RandomForestRegressor(), 'Gradient Boosting': GradientBoostingRegressor() } for name, model in models.items(): model.fit(X_train, y_train) def predict_traditional(model_name, year, state, crop, yield_): if model_name in models: model = models[model_name] state_encoded = label_encoders['STATE'].transform([state])[0] crop_encoded = label_encoders['CROP'].transform([crop])[0] prediction = model.predict([[year, state_encoded, crop_encoded, yield_]])[0] return prediction else: return "Model not found" # Train RandomForestRegressor model for deep learning model def train_random_forest_model(): def process_tiff(file_path): with rasterio.open(file_path) as src: tiff_data = src.read() B2_image = tiff_data[1, :, :] # Assuming B2 is the second band target_size = (50, 50) B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST) return B2_resized.reshape(-1, 1) data_dir = 'Data' X_list = [] y_list = [] for root, dirs, files in os.walk(data_dir): for file in files: if file.endswith('.tiff'): file_path = os.path.join(root, file) X_list.append(process_tiff(file_path)) y_list.append(np.random.rand(2500)) # Replace with actual target data X = np.vstack(X_list) y = np.hstack(y_list) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) return model rf_model = train_random_forest_model() def predict_random_forest(file): if file is not None: def process_tiff(file_path): with rasterio.open(file_path) as src: tiff_data = src.read() B2_image = tiff_data[1, :, :] target_size = (50, 50) B2_resized = cv2.resize(B2_image, target_size, interpolation=cv2.INTER_NEAREST) return B2_resized.reshape(-1, 1) tiff_processed = process_tiff(file.name) prediction = rf_model.predict(tiff_processed) prediction_reshaped = prediction.reshape((50, 50)) plt.figure(figsize=(10, 10)) plt.imshow(prediction_reshaped, cmap='viridis') plt.colorbar() plt.title('Yield Prediction for Single TIFF File') plt.savefig('/tmp/rf_prediction_overlay.png') return '/tmp/rf_prediction_overlay.png' else: return "No file uploaded" # Load deep learning models def load_deep_learning_model(model_name): base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3)) base_model.trainable = False inputs = Input(shape=(128, 128, 3)) x = base_model(inputs, training=False) x = GlobalAveragePooling2D()(x) outputs = Dense(1, activation='linear')(x) model = Model(inputs, outputs) model.compile(optimizer=Adam(), loss='mean_squared_error', metrics=['mae']) return model deep_learning_models = { 'ResNet50': load_deep_learning_model('ResNet50'), # Add other models here if needed } def predict_deep_learning(model_name, file): if model_name in deep_learning_models: if file is not None: with rasterio.open(file.name) as src: img_data = src.read(1) patch_size = 128 n_patches_x = img_data.shape[1] // patch_size n_patches_y = img_data.shape[0] // patch_size patches = [] for i in range(n_patches_y): for j in range(n_patches_x): patch = img_data[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] patches.append(patch) patches = np.array(patches) preprocessed_patches = [] for patch in patches: img = Image.fromarray(patch) img = img.convert('RGB') img = img.resize((128, 128)) img_array = np.array(img) / 255.0 preprocessed_patches.append(img_array) preprocessed_patches = np.array(preprocessed_patches) model = deep_learning_models[model_name] predictions = model.predict(preprocessed_patches) predictions = predictions.reshape((n_patches_y, n_patches_x)) # Set a threshold to highlight areas with higher predicted yields threshold = np.percentile(predictions, 90) # Adjust the percentile as needed # Create an overlay image to visualize predictions overlay = np.zeros_like(img_data, dtype=np.float32) for i in range(n_patches_y): for j in range(n_patches_x): if predictions[i, j] > threshold: overlay[i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size] = predictions[i, j] # Plot the overlay on the original image plt.figure(figsize=(10, 10)) plt.imshow(img_data, cmap='gray', alpha=0.5) plt.imshow(overlay, cmap='jet', alpha=0.5) plt.title('Crop Yield Prediction Overlay') plt.colorbar() # Save the plot to a file plt.savefig('/tmp/dl_prediction_overlay.png') return '/tmp/dl_prediction_overlay.png' else: return "No file uploaded" else: return "Model not found" inputs_traditional = [ gr.Dropdown(choices=list(models.keys()), label='Model'), gr.Number(label='Year'), gr.Textbox(label='State'), gr.Textbox(label='Crop'), gr.Number(label='Yield'), ] outputs_traditional = gr.Textbox(label='Predicted Profit') inputs_deep_learning = [ gr.Dropdown(choices=list(deep_learning_models.keys()) + ['Random Forest'], label='Model'), gr.File(label='Upload TIFF File') ] outputs_deep_learning = gr.Image(label='Prediction Overlay') with gr.Blocks() as demo: with gr.Tab("Traditional ML Models"): gr.Interface( fn=predict_traditional, inputs=inputs_traditional, outputs=outputs_traditional, title="Profit Prediction using Traditional ML Models" ) with gr.Tab("Deep Learning Models"): gr.Interface( fn=lambda model_name, file: predict_deep_learning(model_name, file) if model_name != 'Random Forest' else predict_random_forest(file), inputs=inputs_deep_learning, outputs=outputs_deep_learning, title="Crop Yield Prediction using Deep Learning Models and Random Forest" ) demo.launch()