sanket09 commited on
Commit
a08d191
·
verified ·
1 Parent(s): 156f08c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -7,6 +7,7 @@ For more information on `huggingface_hub` Inference API support, please check th
7
  """
8
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
 
10
  def extract_text_from_pdf(pdf_path):
11
  # Open the provided PDF file
12
  doc = fitz.open(pdf_path)
@@ -19,14 +20,8 @@ def extract_text_from_pdf(pdf_path):
19
  doc.close() # Ensure the PDF file is closed
20
  return text
21
 
22
- def respond(
23
- message,
24
- history: list[tuple[str, str]],
25
- system_message,
26
- max_tokens,
27
- temperature,
28
- top_p,
29
- ):
30
  messages = [{"role": "system", "content": system_message}]
31
 
32
  for val in history:
@@ -51,6 +46,7 @@ def respond(
51
  print(f"Token: {token}") # Debugging statement to trace tokens
52
  yield response # Yield the complete response up to this point
53
 
 
54
  def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p):
55
  # Extract text from the PDF file
56
  resume_text = extract_text_from_pdf(pdf_file.name)
@@ -61,23 +57,30 @@ def process_resume_and_respond(pdf_file, message, history, system_message, max_t
61
  response = "".join([token for token in response_gen])
62
  return response
63
 
 
64
  # Store the uploaded PDF content globally
65
  uploaded_resume_text = ""
66
 
 
67
  def upload_resume(pdf_file):
68
  global uploaded_resume_text
69
  uploaded_resume_text = extract_text_from_pdf(pdf_file.name)
70
  return "Resume uploaded successfully!"
71
 
 
72
  def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p):
73
  global uploaded_resume_text
74
  # Combine the uploaded resume text with the user message
75
  combined_message = f"Resume:\n{uploaded_resume_text}\n\nUser message:\n{message}"
76
  # Respond using the combined message
77
  response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p)
78
- response = "".join([token for token in response_gen])
 
 
 
79
  return response
80
 
 
81
  """
82
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
83
  """
@@ -108,5 +111,6 @@ demo = gr.TabbedInterface(
108
  ["Upload Resume", "Chat with Job Advisor"]
109
  )
110
 
 
111
  if __name__ == "__main__":
112
  demo.launch()
 
7
  """
8
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
10
+
11
  def extract_text_from_pdf(pdf_path):
12
  # Open the provided PDF file
13
  doc = fitz.open(pdf_path)
 
20
  doc.close() # Ensure the PDF file is closed
21
  return text
22
 
23
+
24
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
 
 
 
 
25
  messages = [{"role": "system", "content": system_message}]
26
 
27
  for val in history:
 
46
  print(f"Token: {token}") # Debugging statement to trace tokens
47
  yield response # Yield the complete response up to this point
48
 
49
+
50
  def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p):
51
  # Extract text from the PDF file
52
  resume_text = extract_text_from_pdf(pdf_file.name)
 
57
  response = "".join([token for token in response_gen])
58
  return response
59
 
60
+
61
  # Store the uploaded PDF content globally
62
  uploaded_resume_text = ""
63
 
64
+
65
  def upload_resume(pdf_file):
66
  global uploaded_resume_text
67
  uploaded_resume_text = extract_text_from_pdf(pdf_file.name)
68
  return "Resume uploaded successfully!"
69
 
70
+
71
  def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p):
72
  global uploaded_resume_text
73
  # Combine the uploaded resume text with the user message
74
  combined_message = f"Resume:\n{uploaded_resume_text}\n\nUser message:\n{message}"
75
  # Respond using the combined message
76
  response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p)
77
+ # Collect all tokens generated
78
+ response = ""
79
+ for token in response_gen:
80
+ response = token # Update the response with the latest token
81
  return response
82
 
83
+
84
  """
85
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
86
  """
 
111
  ["Upload Resume", "Chat with Job Advisor"]
112
  )
113
 
114
+
115
  if __name__ == "__main__":
116
  demo.launch()