Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
7 |
"""
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
-
|
11 |
def extract_text_from_pdf(pdf_path):
|
12 |
# Open the provided PDF file
|
13 |
doc = fitz.open(pdf_path)
|
@@ -17,9 +16,9 @@ def extract_text_from_pdf(pdf_path):
|
|
17 |
for page in doc:
|
18 |
text += page.get_text()
|
19 |
|
|
|
20 |
return text
|
21 |
|
22 |
-
|
23 |
def respond(
|
24 |
message,
|
25 |
history: list[tuple[str, str]],
|
@@ -50,9 +49,9 @@ def respond(
|
|
50 |
token = message.choices[0].delta.content
|
51 |
|
52 |
response += token
|
|
|
53 |
yield response
|
54 |
|
55 |
-
|
56 |
def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p):
|
57 |
# Extract text from the PDF file
|
58 |
resume_text = extract_text_from_pdf(pdf_file.name)
|
@@ -63,7 +62,6 @@ def process_resume_and_respond(pdf_file, message, history, system_message, max_t
|
|
63 |
response = "".join([token for token in response_gen])
|
64 |
return response
|
65 |
|
66 |
-
|
67 |
# Store the uploaded PDF content globally
|
68 |
uploaded_resume_text = ""
|
69 |
|
@@ -72,7 +70,6 @@ def upload_resume(pdf_file):
|
|
72 |
uploaded_resume_text = extract_text_from_pdf(pdf_file.name)
|
73 |
return "Resume uploaded successfully!"
|
74 |
|
75 |
-
|
76 |
def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p):
|
77 |
global uploaded_resume_text
|
78 |
# Combine the uploaded resume text with the user message
|
@@ -82,7 +79,6 @@ def respond_with_resume(message, history, system_message, max_tokens, temperatur
|
|
82 |
response = "".join([token for token in response_gen])
|
83 |
return response
|
84 |
|
85 |
-
|
86 |
"""
|
87 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
88 |
"""
|
@@ -113,6 +109,5 @@ demo = gr.TabbedInterface(
|
|
113 |
["Upload Resume", "Chat with Job Advisor"]
|
114 |
)
|
115 |
|
116 |
-
|
117 |
if __name__ == "__main__":
|
118 |
demo.launch()
|
|
|
7 |
"""
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
|
|
10 |
def extract_text_from_pdf(pdf_path):
|
11 |
# Open the provided PDF file
|
12 |
doc = fitz.open(pdf_path)
|
|
|
16 |
for page in doc:
|
17 |
text += page.get_text()
|
18 |
|
19 |
+
doc.close() # Ensure the PDF file is closed
|
20 |
return text
|
21 |
|
|
|
22 |
def respond(
|
23 |
message,
|
24 |
history: list[tuple[str, str]],
|
|
|
49 |
token = message.choices[0].delta.content
|
50 |
|
51 |
response += token
|
52 |
+
print(f"Token: {token}") # Debugging statement to trace tokens
|
53 |
yield response
|
54 |
|
|
|
55 |
def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p):
|
56 |
# Extract text from the PDF file
|
57 |
resume_text = extract_text_from_pdf(pdf_file.name)
|
|
|
62 |
response = "".join([token for token in response_gen])
|
63 |
return response
|
64 |
|
|
|
65 |
# Store the uploaded PDF content globally
|
66 |
uploaded_resume_text = ""
|
67 |
|
|
|
70 |
uploaded_resume_text = extract_text_from_pdf(pdf_file.name)
|
71 |
return "Resume uploaded successfully!"
|
72 |
|
|
|
73 |
def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p):
|
74 |
global uploaded_resume_text
|
75 |
# Combine the uploaded resume text with the user message
|
|
|
79 |
response = "".join([token for token in response_gen])
|
80 |
return response
|
81 |
|
|
|
82 |
"""
|
83 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
84 |
"""
|
|
|
109 |
["Upload Resume", "Chat with Job Advisor"]
|
110 |
)
|
111 |
|
|
|
112 |
if __name__ == "__main__":
|
113 |
demo.launch()
|