Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -87,41 +87,236 @@ async def predict(file: UploadFile = File(...)):
|
|
87 |
}
|
88 |
|
89 |
# Optional: Serve the Gradio interface (if you still want to use it with FastAPI)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
inputs=inp,
|
116 |
outputs=[inp1, inp2, inp3, out],
|
117 |
preprocess=preprocess_example,
|
118 |
fn=func,
|
119 |
cache_examples=True)
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
123 |
|
124 |
-
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
run_gradio_interface()
|
|
|
87 |
}
|
88 |
|
89 |
# Optional: Serve the Gradio interface (if you still want to use it with FastAPI)
|
90 |
+
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
91 |
+
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
92 |
+
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
93 |
+
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
94 |
+
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
95 |
+
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
96 |
+
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
97 |
+
{'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
|
98 |
+
{'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
|
99 |
+
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
100 |
+
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
101 |
+
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
|
102 |
+
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
103 |
+
|
104 |
+
|
105 |
+
def apply_color_map(rgb, color_map=cdl_color_map):
|
106 |
+
|
107 |
+
|
108 |
+
rgb_mapped = rgb.copy()
|
109 |
+
|
110 |
+
for map_tmp in cdl_color_map:
|
111 |
+
|
112 |
+
for i in range(3):
|
113 |
+
rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
|
114 |
+
|
115 |
+
return rgb_mapped
|
116 |
+
|
117 |
+
|
118 |
+
def stretch_rgb(rgb):
|
119 |
+
|
120 |
+
ls_pct=0
|
121 |
+
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
|
122 |
+
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
|
123 |
+
|
124 |
+
return img_rescale
|
125 |
+
|
126 |
+
def open_tiff(fname):
|
127 |
+
|
128 |
+
with rasterio.open(fname, "r") as src:
|
129 |
+
|
130 |
+
data = src.read()
|
131 |
+
|
132 |
+
return data
|
133 |
+
|
134 |
+
def write_tiff(img_wrt, filename, metadata):
|
135 |
+
|
136 |
+
"""
|
137 |
+
It writes a raster image to file.
|
138 |
+
|
139 |
+
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
|
140 |
+
:param filename: file path to the output file
|
141 |
+
:param metadata: metadata to use to write the raster to disk
|
142 |
+
:return:
|
143 |
+
"""
|
144 |
+
|
145 |
+
with rasterio.open(filename, "w", **metadata) as dest:
|
146 |
+
|
147 |
+
if len(img_wrt.shape) == 2:
|
148 |
+
|
149 |
+
img_wrt = img_wrt[None]
|
150 |
+
|
151 |
+
for i in range(img_wrt.shape[0]):
|
152 |
+
dest.write(img_wrt[i, :, :], i + 1)
|
153 |
+
|
154 |
+
return filename
|
155 |
+
|
156 |
+
|
157 |
+
def get_meta(fname):
|
158 |
+
|
159 |
+
with rasterio.open(fname, "r") as src:
|
160 |
+
|
161 |
+
meta = src.meta
|
162 |
+
|
163 |
+
return meta
|
164 |
+
|
165 |
+
def preprocess_example(example_list):
|
166 |
+
|
167 |
+
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
|
168 |
+
|
169 |
+
return example_list
|
170 |
+
|
171 |
+
|
172 |
+
def inference_segmentor(model, imgs, custom_test_pipeline=None):
|
173 |
+
"""Inference image(s) with the segmentor.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
model (nn.Module): The loaded segmentor.
|
177 |
+
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
|
178 |
+
images.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
(list[Tensor]): The segmentation result.
|
182 |
+
"""
|
183 |
+
cfg = model.cfg
|
184 |
+
device = next(model.parameters()).device # model device
|
185 |
+
# build the data pipeline
|
186 |
+
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
|
187 |
+
test_pipeline = Compose(test_pipeline)
|
188 |
+
# prepare data
|
189 |
+
data = []
|
190 |
+
imgs = imgs if isinstance(imgs, list) else [imgs]
|
191 |
+
for img in imgs:
|
192 |
+
img_data = {'img_info': {'filename': img}}
|
193 |
+
img_data = test_pipeline(img_data)
|
194 |
+
data.append(img_data)
|
195 |
+
# print(data.shape)
|
196 |
+
|
197 |
+
data = collate(data, samples_per_gpu=len(imgs))
|
198 |
+
if next(model.parameters()).is_cuda:
|
199 |
+
# data = collate(data, samples_per_gpu=len(imgs))
|
200 |
+
# scatter to specified GPU
|
201 |
+
data = scatter(data, [device])[0]
|
202 |
+
else:
|
203 |
+
# img_metas = scatter(data['img_metas'],'cpu')
|
204 |
+
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
|
205 |
|
206 |
+
img_metas = data['img_metas'].data[0]
|
207 |
+
img = data['img']
|
208 |
+
data = {'img': img, 'img_metas':img_metas}
|
209 |
+
|
210 |
+
with torch.no_grad():
|
211 |
+
result = model(return_loss=False, rescale=True, **data)
|
212 |
+
return result
|
213 |
+
|
214 |
+
|
215 |
+
def process_rgb(input, mask, indexes):
|
216 |
+
|
217 |
+
|
218 |
+
rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
|
219 |
+
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
|
220 |
+
rgb = np.where(rgb < 0, 0, rgb)
|
221 |
+
rgb = np.where(rgb > 255, 255, rgb)
|
222 |
+
|
223 |
+
return rgb
|
224 |
+
|
225 |
+
def inference_on_file(target_image, model, custom_test_pipeline):
|
226 |
+
|
227 |
+
target_image = target_image.name
|
228 |
+
time_taken=-1
|
229 |
+
st = time.time()
|
230 |
+
print('Running inference...')
|
231 |
+
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
232 |
+
print("Output has shape: " + str(result[0].shape))
|
233 |
+
|
234 |
+
##### get metadata mask
|
235 |
+
input = open_tiff(target_image)
|
236 |
+
meta = get_meta(target_image)
|
237 |
+
mask = np.where(input == meta['nodata'], 1, 0)
|
238 |
+
mask = np.max(mask, axis=0)[None]
|
239 |
+
|
240 |
+
rgb1 = process_rgb(input, mask, [2, 1, 0])
|
241 |
+
rgb2 = process_rgb(input, mask, [8, 7, 6])
|
242 |
+
rgb3 = process_rgb(input, mask, [14, 13, 12])
|
243 |
+
|
244 |
+
result[0] = np.where(mask == 1, 0, result[0])
|
245 |
+
|
246 |
+
et = time.time()
|
247 |
+
time_taken = np.round(et - st, 1)
|
248 |
+
print(f'Inference completed in {str(time_taken)} seconds')
|
249 |
+
|
250 |
+
output=result[0][0] + 1
|
251 |
+
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
252 |
+
output=apply_color_map(output).transpose((1,2,0))
|
253 |
|
254 |
+
return rgb1,rgb2,rgb3,output
|
255 |
+
|
256 |
+
def process_test_pipeline(custom_test_pipeline, bands=None):
|
257 |
+
|
258 |
+
# change extracted bands if necessary
|
259 |
+
if bands is not None:
|
260 |
+
|
261 |
+
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
|
262 |
+
|
263 |
+
if len(extract_index) > 0:
|
264 |
+
|
265 |
+
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
|
266 |
+
|
267 |
+
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
|
268 |
+
|
269 |
+
# adapt collected keys if necessary
|
270 |
+
if len(collect_index) > 0:
|
271 |
+
|
272 |
+
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
|
273 |
+
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
|
274 |
+
|
275 |
+
return custom_test_pipeline
|
276 |
+
|
277 |
+
config = Config.fromfile(config_path)
|
278 |
+
config.model.backbone.pretrained=None
|
279 |
+
model = init_segmentor(config, ckpt, device='cpu')
|
280 |
+
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
281 |
+
|
282 |
+
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
283 |
+
|
284 |
+
with gr.Blocks() as demo:
|
285 |
+
|
286 |
+
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
287 |
+
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
288 |
+
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
289 |
+
''')
|
290 |
+
with gr.Row():
|
291 |
+
with gr.Column():
|
292 |
+
inp = gr.File()
|
293 |
+
btn = gr.Button("Submit")
|
294 |
+
|
295 |
+
with gr.Row():
|
296 |
+
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
297 |
+
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
298 |
+
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
299 |
+
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
300 |
+
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
301 |
+
|
302 |
+
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
303 |
+
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column():
|
306 |
+
gr.Examples(examples=["chip_102_345_merged.tif",
|
307 |
+
"chip_104_104_merged.tif",
|
308 |
+
"chip_109_421_merged.tif"],
|
309 |
inputs=inp,
|
310 |
outputs=[inp1, inp2, inp3, out],
|
311 |
preprocess=preprocess_example,
|
312 |
fn=func,
|
313 |
cache_examples=True)
|
314 |
+
with gr.Column():
|
315 |
+
gr.Markdown(value='### Model prediction legend')
|
316 |
+
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
317 |
+
|
318 |
|
319 |
+
demo.launch()
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
run_gradio_interface()
|