atiyakhan15 commited on
Commit
254b341
·
verified ·
1 Parent(s): 06d70d7

Delete app.py

Browse files

######### pull files
import os
from huggingface_hub import hf_hub_download
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
filename="multi_temporal_crop_classification_Prithvi_100M.py",
token=os.environ.get("token"))
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
token=os.environ.get("token"))
##########
import argparse
from mmcv import Config

from mmseg.models import build_segmentor

from mmseg.datasets.pipelines import Compose, LoadImageFromFile

import rasterio
import torch

from mmseg.apis import init_segmentor

from mmcv.parallel import collate, scatter

import numpy as np
import glob
import os

import time

import numpy as np
import gradio as gr
from functools import partial

import pdb

import matplotlib.pyplot as plt

from skimage import exposure

cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
{'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
{'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]


def apply_color_map(rgb, color_map=cdl_color_map):


rgb_mapped = rgb.copy()

for map_tmp in cdl_color_map:

for i in range(3):
rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])

return rgb_mapped


def stretch_rgb(rgb):

ls_pct=0
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))

return img_rescale

def open_tiff(fname):

with rasterio.open(fname, "r") as src:

data = src.read()

return data

def write_tiff(img_wrt, filename, metadata):

"""
It writes a raster image to file.

:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
:param filename: file path to the output file
:param metadata: metadata to use to write the raster to disk
:return:
"""

with rasterio.open(filename, "w", **metadata) as dest:

if len(img_wrt.shape) == 2:

img_wrt = img_wrt[None]

for i in range(img_wrt.shape[0]):
dest.write(img_wrt[i, :, :], i + 1)

return filename


def get_meta(fname):

with rasterio.open(fname, "r") as src:

meta = src.meta

return meta

def preprocess_example(example_list):

example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]

return example_list


def inference_segmentor(model, imgs, custom_test_pipeline=None):
"""Inference image(s) with the segmentor.

Args:
model (nn.Module): The loaded segmentor.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.

Returns:
(list[Tensor]): The segmentation result.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
data = []
imgs = imgs if isinstance(imgs, list) else [imgs]
for img in imgs:
img_data = {'img_info': {'filename': img}}
img_data = test_pipeline(img_data)
data.append(img_data)
# print(data.shape)

data = collate(data, samples_per_gpu=len(imgs))
if next(model.parameters()).is_cuda:
# data = collate(data, samples_per_gpu=len(imgs))
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# img_metas = scatter(data['img_metas'],'cpu')
# data['img_metas'] = [i.data[0] for i in data['img_metas']]

img_metas = data['img_metas'].data[0]
img = data['img']
data = {'img': img, 'img_metas':img_metas}

with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result


def process_rgb(input, mask, indexes):


rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
rgb = np.where(rgb < 0, 0, rgb)
rgb = np.where(rgb > 255, 255, rgb)

return rgb

def inference_on_file(target_image, model, custom_test_pipeline):

target_image = target_image.name
time_taken=-1
st = time.time()
print('Running inference...')
result = inference_segmentor(model, target_image, custom_test_pipeline)
print("Output has shape: " + str(result[0].shape))

##### get metadata mask
input = open_tiff(target_image)
meta = get_meta(target_image)
mask = np.where(input == meta['nodata'], 1, 0)
mask = np.max(mask, axis=0)[None]

rgb1 = process_rgb(input, mask, [2, 1, 0])
rgb2 = process_rgb(input, mask, [8, 7, 6])
rgb3 = process_rgb(input, mask, [14, 13, 12])

result[0] = np.where(mask == 1, 0, result[0])

et = time.time()
time_taken = np.round(et - st, 1)
print(f'Inference completed in {str(time_taken)} seconds')

output=result[0][0] + 1
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
output=apply_color_map(output).transpose((1,2,0))

return rgb1,rgb2,rgb3,output

def process_test_pipeline(custom_test_pipeline, bands=None):

# change extracted bands if necessary
if bands is not None:

extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]

if len(extract_index) > 0:

custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)

collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]

# adapt collected keys if necessary
if len(collect_index) > 0:

keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys

return custom_test_pipeline

config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)

func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)

with gr.Blocks() as demo:

gr.Markdown(value='# Prithvi multi temporal crop classification')
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
''')
with gr.Row():
with gr.Column():
inp = gr.File()
btn = gr.Button("Submit")

with gr.Row():
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)

btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])

with gr.Row():
with gr.Column():
gr.Examples(examples=["chip_102_345_merged.tif",
"chip_104_104_merged.tif",
"chip_109_421_merged.tif"],
inputs=inp,
outputs=[inp1, inp2, inp3, out],
preprocess=preprocess_example,
fn=func,
cache_examples=True)
with gr.Column():
gr.Markdown(value='### Model prediction legend')
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)


demo.launch()

Files changed (1) hide show
  1. app.py +0 -270
app.py DELETED
@@ -1,270 +0,0 @@
1
- ######### pull files
2
- import os
3
- from huggingface_hub import hf_hub_download
4
- config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
5
- filename="multi_temporal_crop_classification_Prithvi_100M.py",
6
- token=os.environ.get("token"))
7
- ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
8
- filename='multi_temporal_crop_classification_Prithvi_100M.pth',
9
- token=os.environ.get("token"))
10
- ##########
11
- import argparse
12
- from mmcv import Config
13
-
14
- from mmseg.models import build_segmentor
15
-
16
- from mmseg.datasets.pipelines import Compose, LoadImageFromFile
17
-
18
- import rasterio
19
- import torch
20
-
21
- from mmseg.apis import init_segmentor
22
-
23
- from mmcv.parallel import collate, scatter
24
-
25
- import numpy as np
26
- import glob
27
- import os
28
-
29
- import time
30
-
31
- import numpy as np
32
- import gradio as gr
33
- from functools import partial
34
-
35
- import pdb
36
-
37
- import matplotlib.pyplot as plt
38
-
39
- from skimage import exposure
40
-
41
- cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
42
- {'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
43
- {'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
44
- {'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
45
- {'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
46
- {'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
47
- {'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
48
- {'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
49
- {'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
50
- {'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
51
- {'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
52
- {'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
53
- {'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
54
-
55
-
56
- def apply_color_map(rgb, color_map=cdl_color_map):
57
-
58
-
59
- rgb_mapped = rgb.copy()
60
-
61
- for map_tmp in cdl_color_map:
62
-
63
- for i in range(3):
64
- rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
65
-
66
- return rgb_mapped
67
-
68
-
69
- def stretch_rgb(rgb):
70
-
71
- ls_pct=0
72
- pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
73
- img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
74
-
75
- return img_rescale
76
-
77
- def open_tiff(fname):
78
-
79
- with rasterio.open(fname, "r") as src:
80
-
81
- data = src.read()
82
-
83
- return data
84
-
85
- def write_tiff(img_wrt, filename, metadata):
86
-
87
- """
88
- It writes a raster image to file.
89
-
90
- :param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
91
- :param filename: file path to the output file
92
- :param metadata: metadata to use to write the raster to disk
93
- :return:
94
- """
95
-
96
- with rasterio.open(filename, "w", **metadata) as dest:
97
-
98
- if len(img_wrt.shape) == 2:
99
-
100
- img_wrt = img_wrt[None]
101
-
102
- for i in range(img_wrt.shape[0]):
103
- dest.write(img_wrt[i, :, :], i + 1)
104
-
105
- return filename
106
-
107
-
108
- def get_meta(fname):
109
-
110
- with rasterio.open(fname, "r") as src:
111
-
112
- meta = src.meta
113
-
114
- return meta
115
-
116
- def preprocess_example(example_list):
117
-
118
- example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
119
-
120
- return example_list
121
-
122
-
123
- def inference_segmentor(model, imgs, custom_test_pipeline=None):
124
- """Inference image(s) with the segmentor.
125
-
126
- Args:
127
- model (nn.Module): The loaded segmentor.
128
- imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
129
- images.
130
-
131
- Returns:
132
- (list[Tensor]): The segmentation result.
133
- """
134
- cfg = model.cfg
135
- device = next(model.parameters()).device # model device
136
- # build the data pipeline
137
- test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
138
- test_pipeline = Compose(test_pipeline)
139
- # prepare data
140
- data = []
141
- imgs = imgs if isinstance(imgs, list) else [imgs]
142
- for img in imgs:
143
- img_data = {'img_info': {'filename': img}}
144
- img_data = test_pipeline(img_data)
145
- data.append(img_data)
146
- # print(data.shape)
147
-
148
- data = collate(data, samples_per_gpu=len(imgs))
149
- if next(model.parameters()).is_cuda:
150
- # data = collate(data, samples_per_gpu=len(imgs))
151
- # scatter to specified GPU
152
- data = scatter(data, [device])[0]
153
- else:
154
- # img_metas = scatter(data['img_metas'],'cpu')
155
- # data['img_metas'] = [i.data[0] for i in data['img_metas']]
156
-
157
- img_metas = data['img_metas'].data[0]
158
- img = data['img']
159
- data = {'img': img, 'img_metas':img_metas}
160
-
161
- with torch.no_grad():
162
- result = model(return_loss=False, rescale=True, **data)
163
- return result
164
-
165
-
166
- def process_rgb(input, mask, indexes):
167
-
168
-
169
- rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
170
- rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
171
- rgb = np.where(rgb < 0, 0, rgb)
172
- rgb = np.where(rgb > 255, 255, rgb)
173
-
174
- return rgb
175
-
176
- def inference_on_file(target_image, model, custom_test_pipeline):
177
-
178
- target_image = target_image.name
179
- time_taken=-1
180
- st = time.time()
181
- print('Running inference...')
182
- result = inference_segmentor(model, target_image, custom_test_pipeline)
183
- print("Output has shape: " + str(result[0].shape))
184
-
185
- ##### get metadata mask
186
- input = open_tiff(target_image)
187
- meta = get_meta(target_image)
188
- mask = np.where(input == meta['nodata'], 1, 0)
189
- mask = np.max(mask, axis=0)[None]
190
-
191
- rgb1 = process_rgb(input, mask, [2, 1, 0])
192
- rgb2 = process_rgb(input, mask, [8, 7, 6])
193
- rgb3 = process_rgb(input, mask, [14, 13, 12])
194
-
195
- result[0] = np.where(mask == 1, 0, result[0])
196
-
197
- et = time.time()
198
- time_taken = np.round(et - st, 1)
199
- print(f'Inference completed in {str(time_taken)} seconds')
200
-
201
- output=result[0][0] + 1
202
- output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
203
- output=apply_color_map(output).transpose((1,2,0))
204
-
205
- return rgb1,rgb2,rgb3,output
206
-
207
- def process_test_pipeline(custom_test_pipeline, bands=None):
208
-
209
- # change extracted bands if necessary
210
- if bands is not None:
211
-
212
- extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
213
-
214
- if len(extract_index) > 0:
215
-
216
- custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
217
-
218
- collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
219
-
220
- # adapt collected keys if necessary
221
- if len(collect_index) > 0:
222
-
223
- keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
224
- custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
225
-
226
- return custom_test_pipeline
227
-
228
- config = Config.fromfile(config_path)
229
- config.model.backbone.pretrained=None
230
- model = init_segmentor(config, ckpt, device='cpu')
231
- custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
232
-
233
- func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
234
-
235
- with gr.Blocks() as demo:
236
-
237
- gr.Markdown(value='# Prithvi multi temporal crop classification')
238
- gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
239
- The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
240
- ''')
241
- with gr.Row():
242
- with gr.Column():
243
- inp = gr.File()
244
- btn = gr.Button("Submit")
245
-
246
- with gr.Row():
247
- inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
248
- inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
249
- inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
250
- out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
251
- # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
252
-
253
- btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
254
-
255
- with gr.Row():
256
- with gr.Column():
257
- gr.Examples(examples=["chip_102_345_merged.tif",
258
- "chip_104_104_merged.tif",
259
- "chip_109_421_merged.tif"],
260
- inputs=inp,
261
- outputs=[inp1, inp2, inp3, out],
262
- preprocess=preprocess_example,
263
- fn=func,
264
- cache_examples=True)
265
- with gr.Column():
266
- gr.Markdown(value='### Model prediction legend')
267
- gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
268
-
269
-
270
- demo.launch()