File size: 2,787 Bytes
742a176
 
6405dd2
 
 
 
3a56ae9
 
f3e7e7e
a276e06
3a56ae9
 
 
b39c3cf
 
742a176
 
 
 
f010da0
d34083a
ae1e954
742a176
 
 
 
ae1e954
742a176
 
 
4b311cd
d488190
742a176
4eaebd2
742a176
 
d34083a
83da26d
4a7a5a6
6735469
d488190
742a176
 
 
52077e9
742a176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cd95ff
742a176
 
52077e9
4cd95ff
52077e9
 
 
 
 
 
 
 
 
eb52cc6
52077e9
 
 
 
 
 
 
 
 
 
4cd95ff
4050c99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from huggingface_hub import InferenceClient
# Use a pipeline as a high-level helper
import os
from huggingface_hub import login

from transformers import pipeline
login(token=os.getenv("access_key"))
client = pipeline("text-generation", model="google/recurrentgemma-2b")

messages1 = [
    {"role": "user", "content": "Who are you?"},
]
#pipe = pipeline("text-generation", model="google/recurrentgemma-2b-it")
#print (pipe(messages1) )

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient(model="google/recurrentgemma-2b-it")
#client = pipeline("text-generation", model="google/recurrentgemma-2b-it")
max_tokens = 780
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    #messages = [{"role": "system", "content": system_message}]
    

    messages = [{"role": "user", "content": f"{message}"}]
    response = ""


    token = client(messages, max_new_tokens=150)
    print(token)
    response = token
    return response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()
"""
# Modify the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## RAG with PostgreSQL, pgvector, and OpenAI")
    with gr.Row():
        with gr.Column():
            query_input = gr.Textbox(label="Enter your query")
            search_button = gr.Button("Search & Get Answer")
            results_output = gr.Textbox(label="Response", lines=5)
            search_button.click(fn=respond, inputs=[query_input], outputs=[results_output])
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),]
if __name__ == "__main__":
    demo.launch()