import gradio as gr from huggingface_hub import InferenceClient # Use a pipeline as a high-level helper import os from huggingface_hub import login from transformers import pipeline login(token=os.getenv("access_key")) messages1 = [ {"role": "user", "content": "Who are you?"}, ] #pipe = pipeline("text-generation", model="google/recurrentgemma-2b-it") #print (pipe(messages1) ) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient(model="google/recurrentgemma-2b-it") client = pipeline("text-generation", model="google/recurrentgemma-2b-it") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): #messages = [{"role": "system", "content": system_message}] messages = [] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" token = client( messages, max_new_tokens= max_tokens ) print(token) response = token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()