santhosh1234 commited on
Commit
11a3f93
1 Parent(s): 7a540b4

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +29 -58
app.py CHANGED
@@ -1,63 +1,34 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from langchain.chat_models import ChatOpenAI
4
+ from langchain import LLMChain, PromptTemplate
5
+ from langchain.memory import ConversationBufferMemory
6
+
7
+ OPENAI_API_KEY=os.getenv('OPENAI_API_KEY')
8
+
9
+ template = """You are a helpful assistant to answer all user queries.
10
+ {chat_history}
11
+ User: {user_message}
12
+ Chatbot:"""
13
+
14
+ prompt = PromptTemplate(
15
+ input_variables=["chat_history", "user_message"], template=template
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  )
17
 
18
+ memory = ConversationBufferMemory(memory_key="chat_history")
19
+
20
+ llm_chain = LLMChain(
21
+ llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"),
22
+ prompt=prompt,
23
+ verbose=True,
24
+ memory=memory,
25
+ )
26
+
27
+ def get_text_response(user_message,history):
28
+ response = llm_chain.predict(user_message = user_message)
29
+ return response
30
+
31
+ demo = gr.ChatInterface(get_text_response)
32
 
33
  if __name__ == "__main__":
34
+ demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.