File size: 8,286 Bytes
a72119e
 
 
 
 
 
496112d
 
 
 
8365126
 
 
0b6644c
 
 
a72119e
0b6644c
 
 
a72119e
0b6644c
a72119e
 
 
0b6644c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f22cbc
de54836
55e1949
 
0b6644c
 
55e1949
 
 
0b6644c
 
 
 
 
 
55e1949
0b6644c
 
55e1949
0b6644c
 
0bc476b
0b6644c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc476b
0b6644c
0bc476b
0b6644c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc476b
0b6644c
 
 
 
 
 
 
 
 
55e1949
0b6644c
 
55e1949
 
 
 
6d754a8
 
5d2dafa
4902bd9
70e42a3
b1d6fce
d3daa33
402afc5
4902bd9
d3daa33
 
 
 
 
 
402afc5
d3daa33
402afc5
 
 
 
55e1949
402afc5
d3daa33
 
 
55e1949
 
 
 
 
d3daa33
55e1949
 
d3daa33
55e1949
d3daa33
 
 
55e1949
1b81f82
55e1949
 
 
 
1f22cbc
d3daa33
 
 
 
26a50b2
b8c17c8
2189235
d3daa33
55e1949
1f22cbc
2189235
d3daa33
a72119e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
from concurrent.futures import ThreadPoolExecutor
import torch.nn as nn
import torch.cuda.amp  # for mixed precision training

# Enable tensor cores for faster computation
torch.set_float32_matmul_precision("high")
torch.backends.cudnn.benchmark = True  # Enable cudnn autotuner

# Initialize model with optimization flags
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda").eval()  # Ensure model is in eval mode
birefnet = torch.jit.script(birefnet)  # JIT compilation for faster inference

# Pre-compile transforms for better performance
transform_image = transforms.Compose([
    transforms.Resize((1024, 1024), antialias=True),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Increased batch size for better GPU utilization
BATCH_SIZE = 8  # Increased from 3
NUM_WORKERS = 4  # For parallel processing

# Create a thread pool for parallel processing
executor = ThreadPoolExecutor(max_workers=NUM_WORKERS)

def process_batch(batch_data):
    """Process a batch of frames in parallel"""
    images, backgrounds, image_sizes = zip(*batch_data)
    
    # Stack images for batch processing
    input_tensor = torch.stack(images).to("cuda")
    
    # Use automatic mixed precision for faster computation
    with torch.cuda.amp.autocast():
        with torch.no_grad():
            preds = birefnet(input_tensor)[-1].sigmoid().cpu()
    
    processed_frames = []
    for pred, bg, size in zip(preds, backgrounds, image_sizes):
        mask = transforms.ToPILImage()(pred.squeeze()).resize(size)
        
        if isinstance(bg, str) and bg.startswith("#"):
            color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
            background = Image.new("RGBA", size, color_rgb + (255,))
        elif isinstance(bg, Image.Image):
            background = bg.convert("RGBA").resize(size)
        else:
            background = Image.open(bg).convert("RGBA").resize(size)
        
        # Use PIL's faster composite operation
        image = Image.composite(images[0].resize(size), background, mask)
        processed_frames.append(np.array(image))
    
    return processed_frames

@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
    try:
        # Load video more efficiently
        video = mp.VideoFileClip(vid, audio_buffersize=2000)
        if fps == 0:
            fps = video.fps
        audio = video.audio
        
        # Pre-calculate video parameters
        total_frames = int(video.fps * video.duration)
        frames = list(video.iter_frames(fps=fps))  # Load all frames at once
        
        # Pre-process background if using video
        if bg_type == "Video":
            bg_video_clip = mp.VideoFileClip(bg_video)
            if bg_video_clip.duration < video.duration:
                if video_handling == "slow_down":
                    bg_video_clip = bg_video_clip.fx(mp.vfx.speedx, 
                                                   factor=video.duration / bg_video_clip.duration)
                else:
                    multiplier = int(video.duration / bg_video_clip.duration + 1)
                    bg_video_clip = mp.concatenate_videoclips([bg_video_clip] * multiplier)
            background_frames = list(bg_video_clip.iter_frames(fps=fps))
        
        # Process frames in batches
        processed_frames = []
        for i in range(0, len(frames), BATCH_SIZE):
            batch_frames = frames[i:i + BATCH_SIZE]
            batch_data = []
            
            for j, frame in enumerate(batch_frames):
                pil_image = Image.fromarray(frame)
                image_size = pil_image.size
                transformed_image = transform_image(pil_image)
                
                if bg_type == "Color":
                    bg = color
                elif bg_type == "Image":
                    bg = bg_image
                else:  # Video
                    frame_idx = (i + j) % len(background_frames)
                    bg = Image.fromarray(background_frames[frame_idx])
                
                batch_data.append((transformed_image, bg, image_size))
            
            # Process batch
            batch_results = process_batch(batch_data)
            processed_frames.extend(batch_results)
            
            # Yield progress updates
            if len(batch_results) > 0:
                yield batch_results[-1], None
        
        # Create output video
        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
        if audio is not None:
            processed_video = processed_video.set_audio(audio)
        
        # Use temporary file
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
            output_path = tmp_file.name
            processed_video.write_videofile(output_path, codec="libx264", 
                                         preset='ultrafast', threads=NUM_WORKERS)
        
        yield gr.update(visible=False), gr.update(visible=True)
        yield processed_frames[-1], output_path
        
    except Exception as e:
        print(f"Error: {e}")
        yield gr.update(visible=False), gr.update(visible=True)
        yield None, f"Error processing video: {e}"


with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    with gr.Row():
        in_video = gr.Video(label="Input Video", interactive=True)
        stream_image = gr.Image(label="Streaming Output", visible=False)
        out_video = gr.Video(label="Final Output Video")
    submit_button = gr.Button("Change Background", interactive=True)
    with gr.Row():
        fps_slider = gr.Slider(
            minimum=0,
            maximum=60,
            step=1,
            value=0,
            label="Output FPS (0 will inherit the original fps value)",
            interactive=True
        )
        bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
        color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
        bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
        bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
        with gr.Column(visible=False) as video_handling_options:
            video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)

    def update_visibility(bg_type):
        if bg_type == "Color":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Image":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Video":
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


    bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])


    examples = gr.Examples(
        [
            ["rickroll-2sec.mp4", "Video", None, "background.mp4"],
            ["rickroll-2sec.mp4", "Image", "images.webp", None],
            ["rickroll-2sec.mp4", "Color", None, None],
        ],
        inputs=[in_video, bg_type, bg_image, bg_video],
        outputs=[stream_image, out_video],
        fn=fn,
        cache_examples=True,
        cache_mode="eager",
    )


    submit_button.click(
        fn,
        inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
        outputs=[stream_image, out_video],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)