Spaces:
Runtime error
Runtime error
File size: 8,286 Bytes
a72119e 496112d 8365126 0b6644c a72119e 0b6644c a72119e 0b6644c a72119e 0b6644c 1f22cbc de54836 55e1949 0b6644c 55e1949 0b6644c 55e1949 0b6644c 55e1949 0b6644c 0bc476b 0b6644c 0bc476b 0b6644c 0bc476b 0b6644c 0bc476b 0b6644c 55e1949 0b6644c 55e1949 6d754a8 5d2dafa 4902bd9 70e42a3 b1d6fce d3daa33 402afc5 4902bd9 d3daa33 402afc5 d3daa33 402afc5 55e1949 402afc5 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 1b81f82 55e1949 1f22cbc d3daa33 26a50b2 b8c17c8 2189235 d3daa33 55e1949 1f22cbc 2189235 d3daa33 a72119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
from concurrent.futures import ThreadPoolExecutor
import torch.nn as nn
import torch.cuda.amp # for mixed precision training
# Enable tensor cores for faster computation
torch.set_float32_matmul_precision("high")
torch.backends.cudnn.benchmark = True # Enable cudnn autotuner
# Initialize model with optimization flags
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda").eval() # Ensure model is in eval mode
birefnet = torch.jit.script(birefnet) # JIT compilation for faster inference
# Pre-compile transforms for better performance
transform_image = transforms.Compose([
transforms.Resize((1024, 1024), antialias=True),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Increased batch size for better GPU utilization
BATCH_SIZE = 8 # Increased from 3
NUM_WORKERS = 4 # For parallel processing
# Create a thread pool for parallel processing
executor = ThreadPoolExecutor(max_workers=NUM_WORKERS)
def process_batch(batch_data):
"""Process a batch of frames in parallel"""
images, backgrounds, image_sizes = zip(*batch_data)
# Stack images for batch processing
input_tensor = torch.stack(images).to("cuda")
# Use automatic mixed precision for faster computation
with torch.cuda.amp.autocast():
with torch.no_grad():
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
processed_frames = []
for pred, bg, size in zip(preds, backgrounds, image_sizes):
mask = transforms.ToPILImage()(pred.squeeze()).resize(size)
if isinstance(bg, str) and bg.startswith("#"):
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", size, color_rgb + (255,))
elif isinstance(bg, Image.Image):
background = bg.convert("RGBA").resize(size)
else:
background = Image.open(bg).convert("RGBA").resize(size)
# Use PIL's faster composite operation
image = Image.composite(images[0].resize(size), background, mask)
processed_frames.append(np.array(image))
return processed_frames
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
try:
# Load video more efficiently
video = mp.VideoFileClip(vid, audio_buffersize=2000)
if fps == 0:
fps = video.fps
audio = video.audio
# Pre-calculate video parameters
total_frames = int(video.fps * video.duration)
frames = list(video.iter_frames(fps=fps)) # Load all frames at once
# Pre-process background if using video
if bg_type == "Video":
bg_video_clip = mp.VideoFileClip(bg_video)
if bg_video_clip.duration < video.duration:
if video_handling == "slow_down":
bg_video_clip = bg_video_clip.fx(mp.vfx.speedx,
factor=video.duration / bg_video_clip.duration)
else:
multiplier = int(video.duration / bg_video_clip.duration + 1)
bg_video_clip = mp.concatenate_videoclips([bg_video_clip] * multiplier)
background_frames = list(bg_video_clip.iter_frames(fps=fps))
# Process frames in batches
processed_frames = []
for i in range(0, len(frames), BATCH_SIZE):
batch_frames = frames[i:i + BATCH_SIZE]
batch_data = []
for j, frame in enumerate(batch_frames):
pil_image = Image.fromarray(frame)
image_size = pil_image.size
transformed_image = transform_image(pil_image)
if bg_type == "Color":
bg = color
elif bg_type == "Image":
bg = bg_image
else: # Video
frame_idx = (i + j) % len(background_frames)
bg = Image.fromarray(background_frames[frame_idx])
batch_data.append((transformed_image, bg, image_size))
# Process batch
batch_results = process_batch(batch_data)
processed_frames.extend(batch_results)
# Yield progress updates
if len(batch_results) > 0:
yield batch_results[-1], None
# Create output video
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
if audio is not None:
processed_video = processed_video.set_audio(audio)
# Use temporary file
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
processed_video.write_videofile(output_path, codec="libx264",
preset='ultrafast', threads=NUM_WORKERS)
yield gr.update(visible=False), gr.update(visible=True)
yield processed_frames[-1], output_path
except Exception as e:
print(f"Error: {e}")
yield gr.update(visible=False), gr.update(visible=True)
yield None, f"Error processing video: {e}"
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
with gr.Row():
in_video = gr.Video(label="Input Video", interactive=True)
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background", interactive=True)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
interactive=True
)
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
with gr.Column(visible=False) as video_handling_options:
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Image":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Video":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
examples = gr.Examples(
[
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
["rickroll-2sec.mp4", "Image", "images.webp", None],
["rickroll-2sec.mp4", "Color", None, None],
],
inputs=[in_video, bg_type, bg_image, bg_video],
outputs=[stream_image, out_video],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
outputs=[stream_image, out_video],
)
if __name__ == "__main__":
demo.launch(show_error=True) |