import streamlit as st import pandas as pd from transformers import pipeline classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0") def predict_teacher_course(feedback): sequence_to_classify = feedback candidate_labels = ["teacher", "course"] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) return str(output['labels'][0]) def predict_sentiment(feedback): sequence_to_classify = feedback candidate_labels = ["positive", "negative", "neutral"] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) return str(output['labels'][0]) def predict_teacher_aspect(feedback): sequence_to_classify = feedback candidate_labels = ['general', 'teaching skills', 'behaviour', 'knowledge', 'experience', 'assessment'] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) return str(output['labels'][0]) def predict_course_aspect(feedback): sequence_to_classify = feedback candidate_labels = ['relevancy', 'general', 'content', 'learning material', 'pace'] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) return str(output['labels'][0]) # Streamlit app layout st.set_page_config(page_title="Aspect-based Sentiment Anlaysis of Student Feedback", layout="centered", initial_sidebar_state="auto") st.markdown(""" #### This application analyzes the student feedback to determine whether it is about a teacher or a course, detects sentiment, and identifies important teacher or course aspects. """) # Get user input user_input = st.text_area("Enter the feedback or comments for analysis:", height=200) if st.button("Analyze Text"): if user_input.strip(): # Predict whether it's about teacher or course type_result = predict_teacher_course(user_input) sentiment_result = predict_sentiment(user_input) if type_result == 'teacher': aspect_result = predict_teacher_aspect(user_input) else: aspect_result = predict_course_aspect(user_input) # Display the results in a nice way st.subheader("Analysis Results") st.markdown(f"**Type:** `{type_result}`") st.markdown(f"**Sentiment:** `{sentiment_result}`") st.write(f"**Aspect:** `{aspect_result}`") else: st.error("Please enter some text for analysis.") # Add a footer st.markdown("---") st.markdown("**Developed by Sarang Shaikh**") st.markdown(""" Feel free to reach out for more information or suggestions! """)