Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
best_model = joblib.load("best_model.pkl")
|
7 |
+
roc_img = Image.open("roc_curve_rf_tuned.png")
|
8 |
+
|
9 |
+
def churn_prediction(age, gender, tenure, usage_frequency, support_calls,
|
10 |
+
payment_delay, last_interaction, total_spend,
|
11 |
+
subscription_type, contract_length):
|
12 |
+
try:
|
13 |
+
|
14 |
+
input_data = {
|
15 |
+
"Age": age,
|
16 |
+
"Gender_Male": 1 if gender == "Male" else 0,
|
17 |
+
"Gender_Female": 1 if gender == "Female" else 0,
|
18 |
+
"Usage Frequency": usage_frequency,
|
19 |
+
"Support Calls": support_calls,
|
20 |
+
"Contract Length_Monthly": 1 if contract_length == "Monthly" else 0,
|
21 |
+
"Contract Length_Quarterly": 1 if contract_length == "Quarterly" else 0,
|
22 |
+
"Contract Length_Annual": 1 if contract_length == "Annual" else 0,
|
23 |
+
"Payment Delay": payment_delay,
|
24 |
+
"Last Interaction": last_interaction,
|
25 |
+
"Total Spend": total_spend,
|
26 |
+
"Tenure": tenure,
|
27 |
+
"Subscription Type_Basic": 1 if subscription_type == "Basic" else 0,
|
28 |
+
"Subscription Type_Premium": 1 if subscription_type == "Premium" else 0,
|
29 |
+
"Subscription Type_Standard": 1 if subscription_type == "Standard" else 0,
|
30 |
+
}
|
31 |
+
|
32 |
+
input_df = pd.DataFrame([input_data])
|
33 |
+
|
34 |
+
# Predict churn and probability
|
35 |
+
prediction = best_model.predict(input_df)
|
36 |
+
prediction_proba = best_model.predict_proba(input_df)[:, 1]
|
37 |
+
|
38 |
+
churn_result = "Yes" if prediction[0] == 1 else "No"
|
39 |
+
churn_probability = f"{prediction_proba[0]:.2f}"
|
40 |
+
|
41 |
+
return churn_result, churn_probability, roc_img
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error: {str(e)}", "N/A", None
|
45 |
+
|
46 |
+
inputs = [
|
47 |
+
gr.Slider(18, 100, value=40, label="Age"),
|
48 |
+
gr.Dropdown(["Female", "Male"], value="Male", label="Gender"),
|
49 |
+
gr.Slider(1, 60, value=30, label="Tenure (months)"),
|
50 |
+
gr.Slider(1, 30, value=15, label="Usage Frequency"),
|
51 |
+
gr.Slider(0, 10, value=4, label="Support Calls"),
|
52 |
+
gr.Slider(0, 30, value=15, label="Payment Delay"),
|
53 |
+
gr.Slider(1, 30, value=15, label="Last Interaction (days ago)"),
|
54 |
+
gr.Slider(100, 1000, value=620, label="Total Spend"),
|
55 |
+
gr.Dropdown(["Premium", "Standard", "Basic"], value="Standard", label="Subscription Type"),
|
56 |
+
gr.Dropdown(["Monthly", "Quarterly", "Annual"], value="Annual", label="Contract Length")
|
57 |
+
]
|
58 |
+
|
59 |
+
outputs = [
|
60 |
+
gr.Textbox(label="Churn Prediction"),
|
61 |
+
gr.Textbox(label="Churn Probability"),
|
62 |
+
gr.Image(label="ROC Curve")
|
63 |
+
]
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
+
fn=churn_prediction,
|
67 |
+
inputs=inputs,
|
68 |
+
outputs=outputs,
|
69 |
+
title="Customer Churn Prediction"
|
70 |
+
).launch()
|