saranimje commited on
Commit
aa95367
Β·
verified Β·
1 Parent(s): 16e7fc7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -2
README.md CHANGED
@@ -1,9 +1,9 @@
1
  ---
2
  title: DSA Project
3
- emoji: πŸ“Š
4
  colorFrom: pink
5
  colorTo: purple
6
- sdk: gradio
7
  sdk_version: 5.25.2
8
  app_file: app.py
9
  pinned: false
@@ -11,3 +11,86 @@ short_description: Customer Churn Analysis and Prediction
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: DSA Project
3
+ emoji: πŸ“ˆ
4
  colorFrom: pink
5
  colorTo: purple
6
+ sdk: streamlit
7
  sdk_version: 5.25.2
8
  app_file: app.py
9
  pinned: false
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ # Customer Churn Prediction Application
16
+
17
+ This application predicts customer churn based on various customer attributes using a machine learning model.
18
+
19
+ ## Overview
20
+
21
+ Customer churn prediction is a critical task for businesses to identify customers who are likely to discontinue using their products or services. This application uses a Random Forest model trained on historical customer data to predict churn likelihood.
22
+
23
+ ## Features
24
+
25
+ - Interactive web interface for making churn predictions
26
+ - Input validation and error handling
27
+ - Visualization of model performance through ROC curve
28
+ - Probability-based risk assessment
29
+ - Easy-to-use sliders and dropdown menus for data input
30
+
31
+ ## Installation
32
+
33
+ ### Prerequisites
34
+
35
+ - Python 3.8 or higher
36
+ - Required packages (see requirements.txt)
37
+
38
+ ### Setup
39
+
40
+ To run this application on your local machine:
41
+
42
+ 1. Clone this Space
43
+ 2. Install the required packages:
44
+ ```
45
+ pip install -r requirements.txt
46
+ ```
47
+ 3. Run the application:
48
+ ```
49
+ streamlit run app.py
50
+ ```
51
+
52
+ ## Usage
53
+
54
+ 1. Adjust the sliders and select options to input customer information:
55
+ - Age
56
+ - Gender
57
+ - Tenure (months)
58
+ - Usage Frequency
59
+ - Support Calls
60
+ - Payment Delay
61
+ - Last Interaction (days ago)
62
+ - Total Spend
63
+ - Subscription Type
64
+ - Contract Length
65
+
66
+ 2. Click "Predict Churn" to see the prediction results.
67
+
68
+ 3. The application will display:
69
+ - Churn prediction (Yes/No)
70
+ - Churn probability (0.00-1.00)
71
+ - Risk level (Low/Medium/High)
72
+ - ROC curve visualization showing model performance
73
+
74
+ ## Model Information
75
+
76
+ The prediction model (`best_model.pkl`) is a trained Random Forest classifier that has been optimized for churn prediction. The model was trained on historical customer data with features including demographic information, usage patterns, and financial metrics.
77
+
78
+ ## Deployment
79
+
80
+ This application can be deployed on Hugging Face Spaces:
81
+
82
+ 1. Create a new Space on [Hugging Face](https://huggingface.co/spaces)
83
+ 2. Select Streamlit or Gradio as the SDK
84
+ 3. Upload the necessary files:
85
+ - `app.py` (or `app_gradio.py`)
86
+ - `best_model.pkl`
87
+ - `roc_curve_rf_tuned.png`
88
+ - `requirements.txt`
89
+
90
+ ## Files Description
91
+
92
+ - `app.py`: Streamlit application code
93
+ - `app_gradio.py`: Gradio application code (alternative interface)
94
+ - `best_model.pkl`: Trained machine learning model
95
+ - `roc_curve_rf_tuned.png`: ROC curve visualization of model performance
96
+ - `requirements.txt`: List of Python dependencies