Spaces:
Sleeping
Sleeping
File size: 18,561 Bytes
a7ac876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# ==========================
# Data Handling & Storage
# ==========================
import json
import ast
import pandas as pd
import numpy as np
# ==========================
# Web Scraping & Data Retrieval
# ==========================
import requests
import httpx
import feedparser
import concurrent.futures
from bs4 import BeautifulSoup
from googlesearch import search
from urllib.parse import urlparse
# ==========================
# Natural Language Processing (NLP)
# ==========================
import nltk
import spacy
import gensim
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from transformers import pipeline
from deep_translator import GoogleTranslator
from gtts import gTTS # Text-to-speech
# ==========================
# Machine Learning & Text Analysis
# ==========================
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, ENGLISH_STOP_WORDS
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.model_selection import RandomizedSearchCV
# ==========================
# Data Visualization
# ==========================
import matplotlib.pyplot as plt
import seaborn as sns
# ==========================
# Utility & Performance Optimization
# ==========================
import re
import os
import io
from collections import Counter
from tqdm import tqdm # progress bar
def fetch_news_data(company_name: str, article_number: int):
excluded_domains = ["youtube.com", "en.wikipedia.org", "m.economictimes.com", "www.prnewswire.com", "economictimes.indiatimes.com", "www.moneycontrol.com"]
def is_valid_news_article(url, company_name):
try:
domain = urlparse(url).netloc # extracts the domain
if company_name.lower() in domain.lower() or any(excluded_domain in domain for excluded_domain in excluded_domains):
return False
return True
except Exception:
return False # handle unexpected errors
def get_top_articles(company_name, article_number):
query = f"{company_name} latest news article"
valid_urls = []
for url in search(query, num_results = article_number*2):
if is_valid_news_article(url, company_name):
valid_urls.append(url)
if len(valid_urls) > article_number+1:
break
return valid_urls
def extract_article_data(url):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}
try:
response = requests.get(url, headers=headers)
response.raise_for_status() # handle HTTP errors
soup = BeautifulSoup(response.content, 'html.parser')
# extract title
title = soup.title.string.strip() if soup.title else None
source = url.split('/')[2] # Extract domain
# validate data
if not title:
return None
return {"title": title, "link": url, "source": source}
except (requests.exceptions.RequestException, AttributeError):
return None # skip articles with invalid data
def main(company_name, article_number):
urls = get_top_articles(company_name, article_number)
# extract and validate article data
articles_data = [extract_article_data(url) for url in urls]
articles_data = [article for article in articles_data if article] # remove None values
# create DataFrame only if valid articles exist
if articles_data:
df = pd.DataFrame(articles_data)
else:
df = pd.DataFrame(columns=["title", "link"]) # empty DataFrame if nothing was found
return df
df = main(company_name, article_number+1)
news_df_output = df[["title", "source"]].rename(columns={"title": "Headline", "source": "Source"})
news_df_output["Source"] = news_df_output["Source"].str.replace(r"^www\.", "", regex=True).str.split('.').str[0]
yield {"news_df_output": news_df_output}
def get_article_text(url):
try:
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, "html.parser")
# remove unwanted elements
for unwanted in soup.select("nav, aside, footer, header, .ad, .advertisement, .promo, .sidebar, .related-articles"):
unwanted.extract()
# try extracting from known article containers
article_body = soup.find(['article', 'div', 'section'], class_=['article-body', 'post-body', 'entry-content', 'main-content'])
if article_body:
paragraphs = article_body.find_all('p')
article_text = " ".join([p.get_text() for p in paragraphs]).strip()
return article_text if article_text else None # return None if empty
# fallback to all <p> tags
paragraphs = soup.find_all('p')
article_text = " ".join([p.get_text() for p in paragraphs]).strip()
return article_text if article_text else None # return None if empty
except Exception:
return None # return None in case of an error
df['article_text'] = df['link'].apply(get_article_text)
df = df.reset_index(drop=True)
block_patterns = [
# Error messages (with variations)
r'Oops[!,\.]? something went wrong',
r'An error has occurred',
r'This content is not available',
r'Please enable JavaScript to continue',
r'Error loading content',
r'Follow Us',
# JavaScript patterns
r'var .*?;',
r'alert\(.*?\)',
r'console\.log\(.*?\)',
r'<script.*?</script>',
r'<noscript>.*?</noscript>',
r'<style.*?</style>',
# Loading or restricted content messages
r'Loading[\.]*',
r'You must be logged in to view this content',
r'This content is restricted',
r'Access denied',
r'Please disable your ad blocker',
# GDPR and cookie consent banners
r'This site uses cookies',
r'We use cookies to improve your experience',
r'By using this site, you agree to our use of cookies',
r'Accept Cookies',
# Stories or content teasers with any number
r'\d+\s*Stories',
# Miscellaneous
r'<iframe.*?</iframe>',
r'<meta.*?>',
r'<link.*?>',
r'Refresh the page and try again',
r'Click here if the page does not load',
r'© [0-9]{4}.*? All rights reserved',
r'Unauthorized access',
r'Terms of Service',
r'Privacy Policy',
r'<.*?>',
]
pattern = '|'.join(block_patterns)
df['article_text'] = df['article_text'].str.replace(pattern, '', regex=True).str.strip()
df['article_text'] = df['article_text'].str.replace(r'\s+', ' ', regex=True).str.strip()
custom_stop_words = set(ENGLISH_STOP_WORDS.union({company_name.lower(), 'company', 'ttm', 'rs'}))
# add numeric values (integer, decimal, comma-separated, monetary)
numeric_patterns = re.compile(r'\b\d+(?:[\.,]\d+)?(?:,\d+)*\b|\$\d+(?:[\.,]\d+)?')
numeric_matches = set(re.findall(numeric_patterns, ' '.join(df['article_text'])))
custom_stop_words.update(numeric_matches)
# remove unwanted unicode characters (like \u2018, \u2019, etc.)
unicode_patterns = re.compile(r'[\u2018\u2019\u2020\u2021\u2014]') # Add more if needed
df['article_text'] = df['article_text'].apply(lambda x: unicode_patterns.sub('', x))
custom_stop_words = list(custom_stop_words)
summarizer = pipeline("summarization", model="google/long-t5-tglobal-base")
def generate_summary(text):
try:
if len(text.split()) > 50: # skip very short texts
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return summary
else:
return text
except Exception as e:
print(f"Error processing text: {e}")
return None
# apply summarization to the 'article_text' column
df['summary'] = df['article_text'].apply(generate_summary)
# load a pre-trained BERT-based sentiment model from Hugging Faces
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
"""Analyze sentiment with a confidence-based neutral zone."""
if not text.strip():
return "Neutral"
try:
result = sentiment_pipeline(text)[0]
sentiment_label = result["label"]
confidence = round(result["score"], 2)
if confidence < 0.7:
return "Neutral"
return f"{sentiment_label.capitalize()} ({confidence})"
except Exception:
return "Error in sentiment analysis."
# apply sentiment analysis on the summary column
df['sentiment'] = df['summary'].apply(analyze_sentiment)
df['sentiment_label'] = df['sentiment'].str.extract(r'(Positive|Negative|Neutral)')
sentiment_bars = plt.figure(figsize=(7, 7))
sns.countplot(x=df['sentiment_label'], palette={'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'})
plt.title("Sentiment Analysis of Articles")
plt.xlabel("Sentiment")
plt.ylabel("Count")
# save the figure as an image file to use in gradio interface
sentiment_bars_file = "sentiment_bars.png"
sentiment_bars.savefig(sentiment_bars_file)
plt.close(sentiment_bars)
sentiment_counts = df['sentiment_label'].value_counts()
colors = {'Positive': 'green', 'Negative': 'red', 'Neutral': 'gray'}
sentiment_pie = plt.figure(figsize=(7, 7))
plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=[colors[label] for label in sentiment_counts.index])
plt.title("Sentiment Distribution of Articles")
sentiment_pie_file = "sentiment_pie.png"
sentiment_pie.savefig(sentiment_pie_file)
plt.close(sentiment_pie)
df['combined_text'] = df['title'] + ' ' + df['summary'] # combine text for analysis
vectorizer = TfidfVectorizer(max_features=1000, stop_words=custom_stop_words)
tfidf = vectorizer.fit_transform(df['combined_text'])
n_topics = 5 # number of topics
nmf = NMF(n_components=n_topics, random_state=42)
W = nmf.fit_transform(tfidf)
H = nmf.components_
feature_names = vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(H):
top_words = [feature_names[i] for i in topic.argsort()[-5:]][::-1] # 5 words per topic
topics.append(", ".join(top_words))
def get_top_topics(row):
topic_indices = W[row].argsort()[-3:][::-1] # get top 3 topics
return [topics[i] for i in topic_indices]
df['top_topics'] = [get_top_topics(i) for i in range(len(df))]
df['dominant_topic'] = W.argmax(axis=1)
df['topic_distribution'] = W.tolist()
similarity_matrix = cosine_similarity(W)
df['similarity_scores'] = similarity_matrix.mean(axis=1)
df['most_similar_article'] = similarity_matrix.argsort(axis=1)[:, -2] # second highest value
df['least_similar_article'] = similarity_matrix.argsort(axis=1)[:, 0] # lowest value
similarity_heatmap = plt.figure(figsize=(10, 8))
sns.heatmap(similarity_matrix, annot=True, fmt=".2f", cmap="coolwarm", xticklabels=False, yticklabels=False)
plt.title("Comparative Analysis of News Coverage Across Articles")
comparisons = []
for i in range(len(df)):
# find most similar and least similar articles
similar_idx = similarity_matrix[i].argsort()[-2] # most similar (excluding itself)
least_similar_idx = similarity_matrix[i].argsort()[0] # least similar
# build comparison text
comparison = {
"Most Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', similar to Article {similar_idx + 1} which also discusses '{topics[df['dominant_topic'][similar_idx]]}'.",
"Least Similar": f"Article {i + 1} focuses on '{topics[df['dominant_topic'][i]]}', contrasting with Article {least_similar_idx + 1} which discusses '{topics[df['dominant_topic'][least_similar_idx]]}'."
}
comparisons.append(comparison)
df['coverage_comparison'] = comparisons
# find common and unique topics
all_topics = df['dominant_topic'].tolist()
topic_counter = Counter(all_topics)
common_topics = [topics[i] for i, count in topic_counter.items() if count > 1]
unique_topics = [topics[i] for i, count in topic_counter.items() if count == 1]
topic_overlap = {
"Common Topics": common_topics,
"Unique Topics": unique_topics
}
sentiment_counts = df['sentiment_label'].value_counts()
if sentiment_counts.get('Positive', 0) > sentiment_counts.get('Negative', 0):
sentiment = "Overall sentiment is positive."
elif sentiment_counts.get('Negative', 0) > sentiment_counts.get('Positive', 0):
sentiment = "Overall sentiment is negative."
else:
sentiment = "Overall sentiment is mixed."
def extract_relevant_topics(topics):
if isinstance(topics, str):
topics = ast.literal_eval(topics) # convert string to list if needed
if len(topics) <= 2:
return topics
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(topics)
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
# sum similarity scores for each topic
topic_scores = similarity_matrix.sum(axis=1)
# get top 2 highest scoring topics
top_indices = topic_scores.argsort()[-2:][::-1]
top_topics = [topics[i] for i in top_indices]
return top_topics
# ensure 'top_topics' is a list
df['top_topics'] = df['top_topics'].apply(lambda x: ast.literal_eval(x) if isinstance(x, str) else x)
# convert lists to sets for easy comparison
df['top_topics_set'] = df['top_topics'].apply(lambda x: set(x) if isinstance(x, list) else set())
# find common topics across all articles
if len(df) > 1:
common_topics = set.intersection(*df['top_topics_set'])
else:
common_topics = set() # no common topics if only one article
# extract unique topics by removing common ones
df['unique_topics'] = df['top_topics_set'].apply(lambda x: list(x - common_topics) if x else [])
# drop the temporary 'top_topics_set' column
df.drop(columns=['top_topics_set'], inplace=True)
coverage_differences = []
for _, row in df.iterrows():
if row['most_similar_article'] in df.index and row['least_similar_article'] in df.index:
most_similar = df.loc[row['most_similar_article']]
least_similar = df.loc[row['least_similar_article']]
# extract most relevant topics
most_relevant_topics = extract_relevant_topics(row['top_topics'])
least_relevant_topics = extract_relevant_topics(least_similar['top_topics'])
if most_relevant_topics and least_relevant_topics:
comparison = {
"Comparison": f"{row['title']} highlights {', '.join(row['top_topics'])}, while {most_similar['title']} discusses {', '.join(most_similar['top_topics'])}.",
"Impact": f"The article emphasizes {most_relevant_topics[0]} and {most_relevant_topics[1]}, contrasting with {least_relevant_topics[0]} and {least_relevant_topics[1]} in the least similar article."
}
coverage_differences.append(comparison)
structured_summary = {
"Company": company_name,
"Articles": [
{
"Title": row['title'],
"Summary": row['summary'],
"Sentiment": row['sentiment'],
"Topics": row['top_topics'],
"Unique Topics": row['unique_topics']
}
for _, row in df.iterrows()
],
"Comparative Sentiment Score": {
"Sentiment Distribution": df['sentiment'].value_counts().to_dict(),
},
"Topic Overlap": {
"Common Topics": list(common_topics) if common_topics else ["No common topics found"],
"Unique Topics": [
{"Title": row['title'], "Unique Topics": row['unique_topics']}
for _, row in df.iterrows()
]
},
"Final Sentiment Analysis": f"{company_name}’s latest news coverage is mostly {df['sentiment'].mode()[0].lower()}. Potential market impact expected."
}
yield {"json_summary": structured_summary}
english_news = [f"Name of Company: {company_name}"]
for i, row in df.iterrows():
article_entry = f"Article {i + 1}: "
article_entry += f"{row['title']}; "
article_entry += f"Summary: {row['summary']} This article has a {row['sentiment_label'].lower()} sentiment."
english_news.append(article_entry)
yield {"english_news_list": english_news}
translator = GoogleTranslator(source='en', target='hi') # 'hi' = Hindi
translated_news = []
for text in tqdm(english_news, desc="Translating"):
translated_news.append(translator.translate(text))
yield {"hindi_news_list": translated_news}
hindi_news = '; '.join(translated_news)
# yield {"hindi_news_text": hindi_news}
def text_to_speech(text, language='hi'):
tts = gTTS(text=text, lang=language, slow=False)
filename = "hindi_news.mp3" # save file to path
tts.save(filename)
return filename
print(df)
news_audio = text_to_speech(hindi_news)
yield {"hindi_news_audio": news_audio}
yield {"bar_chart": sentiment_bars_file}
yield {"pie_chart": sentiment_pie_file} |