saranimje commited on
Commit
4284273
·
verified ·
1 Parent(s): 6c27010

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -62
README.md CHANGED
@@ -1,63 +1,74 @@
1
- # Live Company News Analyzer
2
- **A project by Sara Nimje - [Visit Portfolio Website](https://saranimje.github.io/)**
3
- This application fetches live news articles for a company, analyzes sentiment, summarizes content, and converts it into Hindi audio.
4
- ## Objective:
5
- I have developed a web-based application that extracts key details from multiple news articles related to a given company. The application performs sentiment analysis, conducts a comparative analysis, and generates a text-to-speech (TTS) output in Hindi. Users can input a company name and receive a structured sentiment report along with an audio summary, making the information more accessible and insightful.
6
- # Project Setup
7
- ## Installation:
8
-
9
- - Clone this repository -
10
- `git clone https://github.com/saranimje/news-summarizer.git `
11
- - Navigate to directory -
12
- `cd news-summarizer`
13
-
14
- - Install Dependencies -
15
- `pip install -r requirements.txt`
16
-
17
- - Run Gradio App -
18
- `python app.py`
19
-
20
- - Run API (Optional) -
21
- `uvicorn api:app --reload`
22
-
23
- # Model Details
24
- ## Summarization Model
25
- - Uses transformers from Hugging Face.
26
- - Model: `google/long-t5-tglobal-base`
27
-
28
- ## Sentiment Analysis
29
- Uses default sentiment-analysis pipeline from Hugging Face.
30
-
31
- ## Topic Modelling
32
- - Uses TF-IDF vectorization with NMF (Non-Negative Matrix Factorization) to extract key topics from news articles.
33
- - Utilizes cosine similarity to measure relationships between articles.
34
-
35
- ## Text-to-Speech
36
- Uses `gTTS (Google Text-to-Speech)`
37
- ## Translation
38
- Uses `GoogleTranslator` (source: English, target: Hindi).
39
-
40
-
41
- # API Development
42
- This project includes a **FastAPI-based API** to fetch news articles and analyze them.
43
- ## **Endpoints:**
44
- **1. Home**
45
- - `GET /`
46
- - Returns: `{"message": "News Summarization API is running!"}`
47
- **2. Fetch News**
48
- - `GET /news/?company_name=Tesla&article_number=5`
49
- - Returns JSON output containing news articles and analysis.
50
- # API Development
51
- ## Using Postman or Curl:
52
- 1. Open **Postman** or any API testing tool.
53
- 2. Send a `GET` request to:
54
- ` http://127.0.0.1:8000/news/?company_name=Tesla&article_number=5`
55
- 3. View JSON response with news articles and summaries.
56
-
57
- ## Third-Party API Usage
58
- - **News Sources**: Google Search (`googlesearch` Python module).
59
- - **Libraries Used**:
60
- - `requests` for API calls
61
- - `gensim`, `deep_translator`, `nltk` for text processing.
62
- - `googlesearch` to fetch news links.
 
 
 
 
 
 
 
 
 
 
 
63
  - `feedparser` for RSS feeds.
 
1
+ ---
2
+ title: "News Summarizer"
3
+ emoji: "📰"
4
+ colorFrom: "blue"
5
+ colorTo: "green"
6
+ sdk: "gradio"
7
+ sdk_version: "3.50.2" # Update if needed
8
+ app_file: "app.py"
9
+ pinned: false
10
+ ---
11
+
12
+ # Live Company News Analyzer
13
+ **A project by Sara Nimje - [Visit Portfolio Website](https://saranimje.github.io/)**
14
+ This application fetches live news articles for a company, analyzes sentiment, summarizes content, and converts it into Hindi audio.
15
+ ## Objective:
16
+ I have developed a web-based application that extracts key details from multiple news articles related to a given company. The application performs sentiment analysis, conducts a comparative analysis, and generates a text-to-speech (TTS) output in Hindi. Users can input a company name and receive a structured sentiment report along with an audio summary, making the information more accessible and insightful.
17
+ # Project Setup
18
+ ## Installation:
19
+
20
+ - Clone this repository -
21
+ `git clone https://github.com/saranimje/news-summarizer.git `
22
+ - Navigate to directory -
23
+ `cd news-summarizer`
24
+
25
+ - Install Dependencies -
26
+ `pip install -r requirements.txt`
27
+
28
+ - Run Gradio App -
29
+ `python app.py`
30
+
31
+ - Run API (Optional) -
32
+ `uvicorn api:app --reload`
33
+
34
+ # Model Details
35
+ ## Summarization Model
36
+ - Uses transformers from Hugging Face.
37
+ - Model: `google/long-t5-tglobal-base`
38
+
39
+ ## Sentiment Analysis
40
+ Uses default sentiment-analysis pipeline from Hugging Face.
41
+
42
+ ## Topic Modelling
43
+ - Uses TF-IDF vectorization with NMF (Non-Negative Matrix Factorization) to extract key topics from news articles.
44
+ - Utilizes cosine similarity to measure relationships between articles.
45
+
46
+ ## Text-to-Speech
47
+ Uses `gTTS (Google Text-to-Speech)`
48
+ ## Translation
49
+ Uses `GoogleTranslator` (source: English, target: Hindi).
50
+
51
+
52
+ # API Development
53
+ This project includes a **FastAPI-based API** to fetch news articles and analyze them.
54
+ ## **Endpoints:**
55
+ **1. Home**
56
+ - `GET /`
57
+ - Returns: `{"message": "News Summarization API is running!"}`
58
+ **2. Fetch News**
59
+ - `GET /news/?company_name=Tesla&article_number=5`
60
+ - Returns JSON output containing news articles and analysis.
61
+ # API Development
62
+ ## Using Postman or Curl:
63
+ 1. Open **Postman** or any API testing tool.
64
+ 2. Send a `GET` request to:
65
+ ` http://127.0.0.1:8000/news/?company_name=Tesla&article_number=5`
66
+ 3. View JSON response with news articles and summaries.
67
+
68
+ ## Third-Party API Usage
69
+ - **News Sources**: Google Search (`googlesearch` Python module).
70
+ - **Libraries Used**:
71
+ - `requests` for API calls
72
+ - `gensim`, `deep_translator`, `nltk` for text processing.
73
+ - `googlesearch` to fetch news links.
74
  - `feedparser` for RSS feeds.