File size: 1,960 Bytes
c8201c6 0752735 c8201c6 16da06e c8201c6 16da06e c8201c6 16da06e c8201c6 16da06e c8201c6 16da06e c8201c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
Import transformers and gradio
import transformers
import gradio as gr
import git
import os
os.system("pip install --upgrade pip")
#Load arabert preprocessor
import git
git.Git("arabert").clone("https://github.com/aub-mind/arabert")
from arabert.preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
#Load Model
from transformers import EncoderDecoderModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
model.eval()
def generate_response(text, minimum_length, p, temperature):
text_clean = arabert_prep.preprocess(text)
inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
outputs = model.generate(input_ids = inputs.input_ids,
attention_mask = inputs.attention_mask,
do_sample = True,
min_length=minimum_length,
top_p = p,
temperature = temperature)
preds = tokenizer.batch_decode(outputs)
response = str(preds)
response = response.replace("\'", '')
response = response.replace("[[CLS]", '')
response = response.replace("[SEP]]", '')
response = str(arabert_prep.desegment(response))
return response
title = 'Empathetic Response Generation in Arabic'
description = 'This demo is for a BERT2BERT model trained for single-turn open-domain empathetic dialogue response generation in Modern Standard Arabic'
gr.Interface(fn=generate_response,
inputs=[
gr.inputs.Textbox(),
gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
gr.inputs.Slider(0.7, 1, step=0.1, label='Top-P'),
gr.inputs.Slider(1, 3, step=0.1, label='Temperature'),
],
outputs="text",
title=title,
description=description).launch() |