File size: 1,960 Bytes
c8201c6
 
 
 
 
 
0752735
c8201c6
 
 
16da06e
c8201c6
 
 
 
16da06e
 
 
 
c8201c6
 
16da06e
 
c8201c6
 
16da06e
c8201c6
 
 
16da06e
 
 
 
 
 
c8201c6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Import transformers and gradio
import transformers
import gradio as gr
import git
import os
os.system("pip install --upgrade pip")

#Load arabert preprocessor
import git
git.Git("arabert").clone("https://github.com/aub-mind/arabert")
from arabert.preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)


#Load Model
from transformers import EncoderDecoderModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
model.eval()

def generate_response(text, minimum_length, p, temperature):
  text_clean = arabert_prep.preprocess(text)
  inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
  outputs = model.generate(input_ids = inputs.input_ids,
                   attention_mask = inputs.attention_mask,
                   do_sample = True,
                   min_length=minimum_length,
                   top_p = p,
                   temperature = temperature)
  preds = tokenizer.batch_decode(outputs) 
  response = str(preds)
  response = response.replace("\'", '')
  response = response.replace("[[CLS]", '')
  response = response.replace("[SEP]]", '')
  response = str(arabert_prep.desegment(response))
  return response

title = 'Empathetic Response Generation in Arabic'
description = 'This demo is for a BERT2BERT model trained for single-turn open-domain empathetic dialogue response generation in Modern Standard Arabic'
gr.Interface(fn=generate_response,
              inputs=[
          gr.inputs.Textbox(),
          gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
          gr.inputs.Slider(0.7, 1, step=0.1,  label='Top-P'),
          gr.inputs.Slider(1, 3, step=0.1, label='Temperature'),
          ],
             outputs="text",
             title=title,
             description=description).launch()