sarasad commited on
Commit
7f6a2d2
·
1 Parent(s): 555d84b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -64
app.py CHANGED
@@ -1,70 +1,49 @@
 
1
  import gradio as gr
 
 
 
2
 
3
- def chatbot(message):
4
- if "conversation" not in gr.Interface.cache:
5
- # Initialize conversation as an empty list
6
- gr.Interface.cache["conversation"] = []
7
-
8
- # Add user input to the conversation history
9
- gr.Interface.cache["conversation"].append("User: " + message)
10
-
11
- # Define the bot's responses based on user input
12
- if message.lower() == "hello":
13
- response = "Hi, how can I help you?"
14
- elif message.lower() == "how are you?":
15
- response = "I'm doing well, thank you!"
16
- elif message.lower() == "goodbye":
17
- response = "Goodbye! Have a great day."
18
- else:
19
- response = "Sorry, I didn't understand that. Can you please rephrase?"
20
-
21
- # Add bot response to the conversation history
22
- gradio.Interface.cache["conversation"].append("Bot: " + response)
23
-
24
- # Return the bot's response
25
- return response
26
 
27
- iface = gr.Interface(fn=chatbot, inputs="text", outputs="text")
28
 
29
- # Customize the layout to display the conversation
30
- iface.interface_html = """
31
- <div>
32
- <div>
33
- <textarea id="input_text" rows="4" cols="50" placeholder="User input"></textarea>
34
- <button id="submit_button">Send</button>
35
- </div>
36
- <div id="conversation" style="margin-top: 10px;"></div>
37
- </div>
38
 
39
- <script>
40
- // Function to update the conversation display
41
- function updateConversation() {
42
- var conversation = gradio.interfaceInstances[0].cache["conversation"];
43
- var conversationDiv = document.getElementById("conversation");
44
- conversationDiv.innerHTML = "";
45
- for (var i = 0; i < conversation.length; i++) {
46
- var message = conversation[i];
47
- var messageDiv = document.createElement("div");
48
- messageDiv.innerHTML = message;
49
- conversationDiv.appendChild(messageDiv);
50
- }
51
- }
52
-
53
- // Add event listener for the submit button
54
- var submitButton = document.getElementById("submit_button");
55
- submitButton.addEventListener("click", function() {
56
- var inputText = document.getElementById("input_text").value;
57
- if (inputText) {
58
- gradio.interfaceInstances[0].input_interfaces[0].setValue(inputText);
59
- gradio.interfaceInstances[0].submit();
60
- }
61
- });
62
-
63
- // Update the conversation display on page load
64
- window.onload = function() {
65
- updateConversation();
66
- }
67
- </script>
68
- """
69
 
70
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
  import gradio as gr
3
+ import git
4
+ import os
5
+ os.system("pip install --upgrade pip")
6
 
7
+ #Load arabert preprocessor
8
+ import git
9
+ git.Git("arabert").clone("https://github.com/aub-mind/arabert")
10
+ from arabert.preprocess import ArabertPreprocessor
11
+ arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
 
13
 
14
+ #Load Model
15
+ from transformers import EncoderDecoderModel, AutoTokenizer
16
+ tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
17
+ model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
18
+ model.eval()
 
 
 
 
19
 
20
+ def generate_response(text, minimum_length, p, temperature):
21
+ text_clean = arabert_prep.preprocess(text)
22
+ inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
23
+ outputs = model.generate(input_ids = inputs.input_ids,
24
+ attention_mask = inputs.attention_mask,
25
+ do_sample = True,
26
+ min_length=minimum_length,
27
+ top_p = p,
28
+ temperature = temperature)
29
+ preds = tokenizer.batch_decode(outputs)
30
+ response = str(preds)
31
+ response = response.replace("\'", '')
32
+ response = response.replace("[[CLS]", '')
33
+ response = response.replace("[SEP]]", '')
34
+ response = str(arabert_prep.desegment(response))
35
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ # title = 'Empathetic Response Generation in Arabic'
38
+ # description = 'This demo is for a BERT2BERT model trained for single-turn open-domain empathetic dialogue response generation in Modern Standard Arabic'
39
+
40
+ with gr.Blocks() as demo:
41
+ gr.Markdown("Empathetic Response Generation in Arabic")
42
+ chatbot = gr.Chatbot()
43
+ output-slider=gr.Slider(5, 20, step=1, label='Minimum Output Length')
44
+ top-p-slider=gr.Slider(0.7, 1, step=0.1, label='Top-P')
45
+ temperature-slider=gr.Slider(1, 3, step=0.1, label='Temperature')
46
+ msg = gr.Textbox()
47
+ clear = gr.Button("Clear")
48
+ msg.submit(generate_response, [msg, chatbot,output-slider,top-p-slider,temperature-slider], [msg, chatbot])
49
+ clear.click(lambda: None, None, chatbot, queue=False)