Spaces:
Sleeping
Sleeping
initial commit
Browse files- Dockerfile +11 -0
- app.py +58 -0
- packages.txt +1 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# os.system('chmod 777 /tmp')
|
4 |
+
# os.system('apt-get update -y')
|
5 |
+
# os.system('apt-get install tesseract-ocr -y')
|
6 |
+
# os.system('pip install -q pytesseract')
|
7 |
+
|
8 |
+
from base64 import b64decode, b64encode
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
|
12 |
+
import tesserocr
|
13 |
+
from fastapi import FastAPI, File, Form
|
14 |
+
from PIL import Image
|
15 |
+
from transformers import pipeline
|
16 |
+
#import streamlit as st
|
17 |
+
|
18 |
+
# pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’
|
19 |
+
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
20 |
+
description = """
|
21 |
+
## DocQA with 🤗 transformers, FastAPI, and Docker
|
22 |
+
This app shows how to do Document Question Answering using
|
23 |
+
FastAPI in a Docker Space 🚀
|
24 |
+
Check out the docs for the `/predict` endpoint below to try it out!
|
25 |
+
"""
|
26 |
+
|
27 |
+
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
28 |
+
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
29 |
+
app = FastAPI()
|
30 |
+
|
31 |
+
pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
32 |
+
|
33 |
+
|
34 |
+
#st.write(output)
|
35 |
+
|
36 |
+
# @app.post("/predict")
|
37 |
+
# def predict(image_file: bytes = File(...), question: str = Form(...)):
|
38 |
+
# """
|
39 |
+
# Using the document-question-answering pipeline from `transformers`, take
|
40 |
+
# a given input document (image) and a question about it, and return the
|
41 |
+
# predicted answer. The model used is available on the hub at:
|
42 |
+
# [`impira/layoutlm-document-qa`](https://huggingface.co/impira/layoutlm-document-qa).
|
43 |
+
# """
|
44 |
+
# image = Image.open(BytesIO(image_file))
|
45 |
+
# output = pipe(image, question)
|
46 |
+
# return output
|
47 |
+
|
48 |
+
@app.get("/")
|
49 |
+
def root():
|
50 |
+
return {"Hello":"world"}
|
51 |
+
|
52 |
+
@app.get("/hello")
|
53 |
+
def read_root():
|
54 |
+
image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
|
55 |
+
|
56 |
+
question = "What is the invoice number?"
|
57 |
+
output = pipe(image, question)
|
58 |
+
return output
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tesseract-ocr-all
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.74.*
|
2 |
+
requests==2.27.*
|
3 |
+
uvicorn[standard]==0.17.*
|
4 |
+
sentencepiece==0.1.*
|
5 |
+
torch==1.11.*
|
6 |
+
transformers[vision]==4.*
|
7 |
+
pytesseract==0.3.10
|
8 |
+
tesserocr
|
9 |
+
python-multipart==0.0.6
|