sarim commited on
Commit
94289df
·
1 Parent(s): cb3382c

test fast api

Browse files
Files changed (1) hide show
  1. app.py +15 -14
app.py CHANGED
@@ -17,24 +17,21 @@ import streamlit as st
17
 
18
  # pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’
19
  choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
20
- # description = """
21
- # ## DocQA with 🤗 transformers, FastAPI, and Docker
22
- # This app shows how to do Document Question Answering using
23
- # FastAPI in a Docker Space 🚀
24
- # Check out the docs for the `/predict` endpoint below to try it out!
25
- # """
26
 
27
  # NOTE - we configure docs_url to serve the interactive Docs at the root path
28
  # of the app. This way, we can use the docs as a landing page for the app on Spaces.
29
- #app = FastAPI(docs_url="/", description=description)
30
 
31
  pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
32
- image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
33
 
34
- question = "What is the invoice number?"
35
- output = pipe(image, question)
36
 
37
- st.write(output)
38
 
39
  # @app.post("/predict")
40
  # def predict(image_file: bytes = File(...), question: str = Form(...)):
@@ -48,6 +45,10 @@ st.write(output)
48
  # output = pipe(image, question)
49
  # return output
50
 
51
- # @app.get("/hello")
52
- # def read_root():
53
- # return {"Hello": "World"}
 
 
 
 
 
17
 
18
  # pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’
19
  choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
20
+ description = """
21
+ ## DocQA with 🤗 transformers, FastAPI, and Docker
22
+ This app shows how to do Document Question Answering using
23
+ FastAPI in a Docker Space 🚀
24
+ Check out the docs for the `/predict` endpoint below to try it out!
25
+ """
26
 
27
  # NOTE - we configure docs_url to serve the interactive Docs at the root path
28
  # of the app. This way, we can use the docs as a landing page for the app on Spaces.
29
+ app = FastAPI(docs_url="/", description=description)
30
 
31
  pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
 
32
 
 
 
33
 
34
+ #st.write(output)
35
 
36
  # @app.post("/predict")
37
  # def predict(image_file: bytes = File(...), question: str = Form(...)):
 
45
  # output = pipe(image, question)
46
  # return output
47
 
48
+ @app.get("/hello")
49
+ def read_root():
50
+ image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png'
51
+
52
+ question = "What is the invoice number?"
53
+ output = pipe(image, question)
54
+ return output