import os os.system('chmod 777 /tmp') os.system('apt-get update -y') os.system('apt-get install tesseract-ocr -y') os.system('pip install -q pytesseract') from base64 import b64decode, b64encode from io import BytesIO import tesserocr from fastapi import FastAPI, File, Form from PIL import Image from transformers import pipeline import streamlit as st # description = """ # ## DocQA with 🤗 transformers, FastAPI, and Docker # This app shows how to do Document Question Answering using # FastAPI in a Docker Space 🚀 # Check out the docs for the `/predict` endpoint below to try it out! # """ # NOTE - we configure docs_url to serve the interactive Docs at the root path # of the app. This way, we can use the docs as a landing page for the app on Spaces. #app = FastAPI(docs_url="/", description=description) pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa") image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png' question = "What is the invoice number?" output = pipe(image, question) st.write(output) # @app.post("/predict") # def predict(image_file: bytes = File(...), question: str = Form(...)): # """ # Using the document-question-answering pipeline from `transformers`, take # a given input document (image) and a question about it, and return the # predicted answer. The model used is available on the hub at: # [`impira/layoutlm-document-qa`](https://huggingface.co/impira/layoutlm-document-qa). # """ # image = Image.open(BytesIO(image_file)) # output = pipe(image, question) # return output # @app.get("/hello") # def read_root(): # return {"Hello": "World"}