import os # os.system('chmod 777 /tmp') # os.system('apt-get update -y') # os.system('apt-get install tesseract-ocr -y') # os.system('pip install -q pytesseract') from base64 import b64decode, b64encode from io import BytesIO import tesserocr from fastapi import FastAPI, File, Form from PIL import Image from transformers import pipeline #import streamlit as st # pytesseract.pytesseract.tesseract_cmd = r’./Tesseract-OCR/tesseract.exe’ choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] description = """ ## DocQA with 🤗 transformers, FastAPI, and Docker This app shows how to do Document Question Answering using FastAPI in a Docker Space 🚀 Check out the docs for the `/predict` endpoint below to try it out! """ # NOTE - we configure docs_url to serve the interactive Docs at the root path # of the app. This way, we can use the docs as a landing page for the app on Spaces. app = FastAPI() pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa") #st.write(output) # @app.post("/predict") # def predict(image_file: bytes = File(...), question: str = Form(...)): # """ # Using the document-question-answering pipeline from `transformers`, take # a given input document (image) and a question about it, and return the # predicted answer. The model used is available on the hub at: # [`impira/layoutlm-document-qa`](https://huggingface.co/impira/layoutlm-document-qa). # """ # image = Image.open(BytesIO(image_file)) # output = pipe(image, question) # return output @app.get("/") def root(): return {"Hello":"world"} @app.get("/hello") def read_root(): image = 'https://templates.invoicehome.com/invoice-template-us-neat-750px.png' question = "What is the invoice number?" output = pipe(image, question) return output