sarim commited on
Commit
299c4e4
·
1 Parent(s): 806831d

update code

Browse files
Files changed (1) hide show
  1. app.py +16 -9
app.py CHANGED
@@ -1,12 +1,12 @@
1
  import asyncio
2
  from pydantic_ai.result import ResultData, RunResult
3
  import streamlit as st
4
- from pydantic_ai import Agent
5
  from pydantic_ai.models.groq import GroqModel
6
  import nest_asyncio
7
  import pdfplumber
8
- from transformers import pipeline
9
- import torch
10
  import os
11
  import presentation as customClass
12
  from streamlit_pdf_viewer import pdf_viewer
@@ -23,11 +23,12 @@ model = GroqModel('llama-3.1-70b-versatile', api_key = api_key)
23
 
24
 
25
  # to summarize
26
- summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
27
  #summarizer = pipeline('text2text-generation', model='describeai/gemini')
28
  #nlpaueb/legal-bert-base-uncased
29
 
30
 
 
31
  def split_long_string(long_string, chunk_size=3500):
32
  string_data = "".join(long_string)
33
  words = string_data.split()
@@ -35,10 +36,16 @@ def split_long_string(long_string, chunk_size=3500):
35
 
36
  return chunks
37
 
 
 
 
38
 
39
  async def ppt_content(data):
40
  agent = Agent(model,
41
- #result_type=customClass.PPT,
 
 
 
42
  system_prompt=(
43
  "You are an expert in making power-point perssentation",
44
  "Create 6 sliders",
@@ -65,18 +72,18 @@ async def ppt_content(data):
65
 
66
 
67
 
68
- result_1 = agent.run_sync(user_prompt = "".join(data))
69
  st.text(result_1.data)
70
  print(result_1.data)
71
 
72
 
73
  def ai_ppt(data):
74
  #call summerizer to summerize pdf
75
- summary = summarizer("".join(data), max_length=400, min_length=100, truncation=True,do_sample=False)
76
 
77
- summary_texts = [item['summary_text'] for item in summary]
78
  #summary_texts = [item['generated_text'] for item in summary]
79
- asyncio.run(ppt_content(data=summary_texts))
80
 
81
 
82
  def extract_data(feed):
 
1
  import asyncio
2
  from pydantic_ai.result import ResultData, RunResult
3
  import streamlit as st
4
+ from pydantic_ai import Agent,RunContext, Tool
5
  from pydantic_ai.models.groq import GroqModel
6
  import nest_asyncio
7
  import pdfplumber
8
+ #from transformers import pipeline
9
+ #import torch
10
  import os
11
  import presentation as customClass
12
  from streamlit_pdf_viewer import pdf_viewer
 
23
 
24
 
25
  # to summarize
26
+ #summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
27
  #summarizer = pipeline('text2text-generation', model='describeai/gemini')
28
  #nlpaueb/legal-bert-base-uncased
29
 
30
 
31
+
32
  def split_long_string(long_string, chunk_size=3500):
33
  string_data = "".join(long_string)
34
  words = string_data.split()
 
36
 
37
  return chunks
38
 
39
+ def return_data() -> str:
40
+ return "".join(data)
41
+
42
 
43
  async def ppt_content(data):
44
  agent = Agent(model,
45
+ result_type=customClass.PPT,
46
+ tools=[
47
+ Tool(return_data,takes_ctx=False)
48
+ ],
49
  system_prompt=(
50
  "You are an expert in making power-point perssentation",
51
  "Create 6 sliders",
 
72
 
73
 
74
 
75
+ result_1 = agent.run_sync(user_prompt = "Create a power point presentation with 6 slides")
76
  st.text(result_1.data)
77
  print(result_1.data)
78
 
79
 
80
  def ai_ppt(data):
81
  #call summerizer to summerize pdf
82
+ # summary = summarizer("".join(data), max_length=400, min_length=100, truncation=True,do_sample=False)
83
 
84
+ # summary_texts = [item['summary_text'] for item in summary]
85
  #summary_texts = [item['generated_text'] for item in summary]
86
+ asyncio.run(ppt_content(data=data))
87
 
88
 
89
  def extract_data(feed):